• 深度学习中epoch、batch、step、iteration等神经网络参数是什么意思?


    epoch:表示将训练数据集中的所有样本都过一遍(且仅过一遍)的训练过程。在一个epoch中,训练算法会按照设定的顺序将所有样本输入模型进行前向传播、计算损失、反向传播和参数更新。一个epoch通常包含多个step。

    batch:一般翻译为“批次”,表示一次性输入模型的一组样本。在神经网络的训练过程中,训练数据往往是很多的,比如几万条甚至几十万条——如果我们一次性将这上万条的数据全部放入模型,对计算机性能、神经网络模型学习能力等的要求太高了;那么就可以将训练数据划分为多个batch,并随后分批将每个batch的样本一起输入到模型中进行前向传播、损失计算、反向传播和参数更新。但要注意,一般batch这个词用的不多,多数情况大家都是只关注batch size的。

    batch size:一般翻译为“批次大小”,表示训练过程中一次输入模型的一组样本的具体样本数量。前面提到了,我们在神经网络训练过程中,往往需要将训练数据划分为多个batch;而具体每一个batch有多少个样本,那么就是batch size指定的了。

    step:一般翻译为“步骤”,表示在一个epoch中模型进行一次参数更新的操作。通俗地说,在神经网络训练过程中,每次完成对一个batch数据的训练,就是完成了一个step。很多情况下,step和iteration表示的是同样的含义。

    iteration:一般翻译为“迭代”,多数情况下就表示在训练过程中经过一个step的操作。一个iteration包括了一个step中前向传播、损失计算、反向传播和参数更新的流程。当然,在某些情况下,step和iteration可能会有细微的区别——有时候iteration是指完成一次前向传播和反向传播的过程,而step是指通过优化算法对模型参数进行一次更新的操作。但是绝大多数情况下,我们就认为二者是一样的即可。
    训练模型的时候一般会以batch 的方式来训练,总共数据集会被分为n个batch,每训练一个batch 的话iter 累加一次

  • 相关阅读:
    cygwin编译wget过程记录
    k8s快速入门教程-----4 工作负载控制器之deployment
    剑指JUC原理-4.共享资源和线程安全性
    redis底层数据结构
    ssh服务
    DAY 69 rsync远程同步
    【云原生】k8s 部署redis集群
    Cadence Sigrity仿真工具简介及案例演示
    IntelliJ IDEA 2023.1 版本可以安装了
    什么是Sectigo证书?
  • 原文地址:https://blog.csdn.net/qq_45560230/article/details/132672319