epoch:表示将训练数据集中的所有样本都过一遍(且仅过一遍)的训练过程。在一个epoch中,训练算法会按照设定的顺序将所有样本输入模型进行前向传播、计算损失、反向传播和参数更新。一个epoch通常包含多个step。
batch:一般翻译为“批次”,表示一次性输入模型的一组样本。在神经网络的训练过程中,训练数据往往是很多的,比如几万条甚至几十万条——如果我们一次性将这上万条的数据全部放入模型,对计算机性能、神经网络模型学习能力等的要求太高了;那么就可以将训练数据划分为多个batch,并随后分批将每个batch的样本一起输入到模型中进行前向传播、损失计算、反向传播和参数更新。但要注意,一般batch这个词用的不多,多数情况大家都是只关注batch size的。
batch size:一般翻译为“批次大小”,表示训练过程中一次输入模型的一组样本的具体样本数量。前面提到了,我们在神经网络训练过程中,往往需要将训练数据划分为多个batch;而具体每一个batch有多少个样本,那么就是batch size指定的了。
step:一般翻译为“步骤”,表示在一个epoch中模型进行一次参数更新的操作。通俗地说,在神经网络训练过程中,每次完成对一个batch数据的训练,就是完成了一个step。很多情况下,step和iteration表示的是同样的含义。
iteration:一般翻译为“迭代”,多数情况下就表示在训练过程中经过一个step的操作。一个iteration包括了一个step中前向传播、损失计算、反向传播和参数更新的流程。当然,在某些情况下,step和iteration可能会有细微的区别——有时候iteration是指完成一次前向传播和反向传播的过程,而step是指通过优化算法对模型参数进行一次更新的操作。但是绝大多数情况下,我们就认为二者是一样的即可。
训练模型的时候一般会以batch 的方式来训练,总共数据集会被分为n个batch,每训练一个batch 的话iter 累加一次