〇、AES 简介
AES 的全称是 Advanced Encryption Standard,意思是高级加密标准。它的出现主要是为了取代 DES(Data Encryption StandardData Encryption Standard)加密算法的,因为我们都知道 DES 算法的密钥长度是 56Bit,因此算法的理论安全强度是 2 的 56 次方。虽然出现了 3DES 的加密方法,但由于它的加密时间是 DES 算法的 3 倍多,64Bit 的分组大小相对较小,所以还是不能满足人们对安全性的要求。于是 1997 年 1 月 2 号,美国国家标准技术研究所宣布希望征集高级加密标准,最终经过安全性分析、软硬件性能评估等严格的步骤,Rijndael 算法获胜。加密算法的要求是:
- 分组大小为 128 位的分组密码。
- 必须支持三种密码标准:128 位、192 位和 256 位。
- 比提交的其他算法更安全。
- 在软件和硬件实现上都很高效。
AES 密码与分组密码 Rijndael 基本上完全一致,Rijndael 分组大小和密钥大小都可以为 128 位、192 位和256 位。然而 AES 只要求分组大小为 128 位,因此只有分组长度为 128Bit 的 Rijndael 才称为 AES 算法。密钥长度为 192 位和 256 位的处理方式和 128 位的处理方式类似,只不过密钥长度每增加 64 位,算法的循环次数就增加 2 轮,128 位循环 10 轮、192 位循环 12 轮、256 位循环 14 轮。
关于 AES 算法参考: 密码学基础:AES加密算法
AES 其中常用的模式就是 ECB 和 CBC,优缺点如下:
ECB 模式(适合加密小消息)(Electronic Code Book:电子密码本)
优点:
- 简单;
- 有利于并行计算;
- 误差不会被传送;
- 不需要初始化向量 IV
缺点:
- 不能隐藏明文的模式;
- 可能对明文进行主动攻击。
CBC 模式:(适合机密比较长的消息)(Cipher Block Chaining:加密块链)
优点:
- 不容易主动攻击,安全性好于 ECB;
- 适合传输长度长的报文,是 SSL、IPSec 的标准。
缺点:
- 不利于并行计算;
- 误差传递;
- 需要初始化向量 IV
注意:另外还有两种模式(OFB-Output FeedBack-输出反馈、CFB-Cipher FeedBack Mode-加密反馈),本文不再介绍。
加密模式参考:分组对称加密模式:ECB/CBC/CFB/OFB缺CTR
一、C# 代码实现
注意:本示例输出的是 Base64 编码格式结果,若需其他格式,可在最后密文输出时,修改Convert.ToBase64String()
方法,然后解密时修改Convert.FromBase64String()
方法。
// 测试 (注意:密钥的长度必须是 16/24/32) string miwen16 = SecurityAES.AesEncrypt("TestString", "1111122222333334"); // rNSr6EVnwFlIbr43jm5pvQ== string miwen24 = SecurityAES.AesEncrypt("TestString", "111112222233333444445555"); // YDYadzDDM5b6EVfi3EUVIQ== string miwen32 = SecurityAES.AesEncrypt("TestString", "11111222223333344444555556666677"); // K+fDhtmqpkwWZL4kByCLFQ== /// /// AES 加密 /// /// 待加密字符串 /// 密钥 /// public static string AesEncrypt(string aeseninstr, string secretkey) { int[] digitlist = { 16, 24, 32 }; if (string.IsNullOrEmpty(aeseninstr) ||string.IsNullOrEmpty(secretkey)|| Array.IndexOf(digitlist, secretkey.Length) <0) return null; byte[] toEncryptArray = Encoding.UTF8.GetBytes(aeseninstr); RijndaelManaged rm = new RijndaelManaged { Key = Encoding.UTF8.GetBytes(secretkey), Mode = CipherMode.ECB, Padding = PaddingMode.PKCS7 }; ICryptoTransform cTransform = rm.CreateEncryptor(); byte[] resultArray = cTransform.TransformFinalBlock(toEncryptArray, 0, toEncryptArray.Length); return Convert.ToBase64String(resultArray); } /// /// AES 解密 /// /// 密文 /// 密钥 /// public static string AesDecrypt(string aesdeinstr, string secretkey) { int[] digitlist = { 16, 24, 32 }; if (string.IsNullOrEmpty(aesdeinstr) || string.IsNullOrEmpty(secretkey) || Array.IndexOf(digitlist, secretkey.Length) < 0) return null; byte[] toEncryptArray = Convert.FromBase64String(aesdeinstr); RijndaelManaged rm = new RijndaelManaged { Key = Encoding.UTF8.GetBytes(secretkey), Mode = CipherMode.ECB, Padding = PaddingMode.PKCS7 }; ICryptoTransform cTransform = rm.CreateDecryptor(); byte[] resultArray = cTransform.TransformFinalBlock(toEncryptArray, 0, toEncryptArray.Length); return Encoding.UTF8.GetString(resultArray); }
二、js 语言实现
1、通过引用 crypto-js 实现(操作简单,推荐使用)
// 引入 crypto-js // npm 方式 > npm install crypto-js // 调用方法 message() 查看结果 // 注意:加解密的编码类型需相同,本示例统一采用 UTF-8 function message(){ outdata_value = AES_ECB_ENCRYPT("TestString", "1111122222333334"); alert(outdata_value) console.log("outdata_value-aes_encrypt:", outdata_value); outdata_value = AES_ECB_DECRYPT(outdata_value, "1111122222333334"); alert(outdata_value) console.log("outdata_value-aes_decrypt:", outdata_value); } // 加密 function AES_ECB_ENCRYPT(text, secretKey) { var keyHex = CryptoJS.enc.Utf8.parse(secretKey); var messageHex = CryptoJS.enc.Utf8.parse(text); var encrypted = CryptoJS.AES.encrypt(text, keyHex, { "mode": CryptoJS.mode.ECB, "padding": CryptoJS.pad.Pkcs7 }); return encrypted.toString(); } // 解密 function AES_ECB_DECRYPT(textBase64, secretKey) { var keyHex = CryptoJS.enc.Utf8.parse(secretKey); var decrypt = CryptoJS.AES.decrypt(textBase64, keyHex, { "mode": CryptoJS.mode.ECB, "padding": CryptoJS.pad.Pkcs7 }); return CryptoJS.enc.Utf8.stringify(decrypt); }
2、纯 js 方法的实现
注意:经测试也是可以用的,但是还需要进一步优化,现只支持待加密字符和密钥均为 16 位。
调用 message() 方法查看效果。
控制台输出:
点击查看 js 语言实现
let outdata_value = ""; let indata_value = "czzj.zfy.acomfei"; let key_value = strtoascii("1111122222333334"); // 49 49 49 49 49 50 50 50 50 50 51 51 51 51 51 52 function message(){ indata_value = stringToHex(indata_value); // 转为 Hex 类型 console.log("indata_value1:",indata_value); // 66 65 69 6e 69 61 6f 6d 79 2e 63 6f 6d 66 65 69 aes_encrypt(); alert(outdata_value) // d1 63 4a fa 0c da da d1 14 e0 fc 63 f1 75 02 cf console.log("outdata_value-aes_encrypt:", outdata_value); indata_value = outdata_value; console.log("indata_value2:",indata_value); aes_decrypt(); console.log("outdata_value-aes_decrypt:",outdata_value); // 63 7a 7a 6a 2e 7a 66 79 2e 61 63 6f 6d 66 65 69 alert(hexCharCodeToStr(outdata_value)); // 将 UTF-8 编码的 Hex 类型转为 string } // 将 string 转为 Hex function stringToHex(str) { var val = "" for (var i = 0; i < str.length; i++) { if (val == "") val = str.charCodeAt(i).toString(16) else val += " " + str.charCodeAt(i).toString(16) } return val } // 将以 UTF-8 编码的字节序列解码为 String function hexCharCodeToStr(hex) { console.log("hexCharCodeToStr-hex:",hex); // 将每一字节都转换成 % 加 16 进制数字的表示形式 // 再通过 decodeURIComponent 方法解码,得到相应的字符串 var bytes = hex.split(" ") var encoded = ""; for (var i = 0; i < bytes.length; i++) { encoded += '%' + bytes[i].toString(16) } return decodeURIComponent(encoded) } // 将 string 转为以 UTF-8 编码的字节序列 function encodeUtf8(text) { const code = encodeURIComponent(text); const bytes = []; for (var i = 0; i < code.length; i++) { const c = code.charAt(i); if (c === '%') { const hex = code.charAt(i + 1) + code.charAt(i + 2); const hexVal = parseInt(hex, 16); bytes.push(hexVal); i += 2; } else bytes.push(c.charCodeAt(0)); } return bytes; } // 将字符串转为 ASCII 类型,fix 为自定义分隔符 function strtoascii(str, fix = ' ') { if (str.length < 1) return false; var arr = str.split(""); var txt = ''; arr.forEach(function (v, i) { txt += fix + v.charCodeAt(); }); console.log("strtoascii-txt:",txt) return txt; } // accumulate values to put into text area var accumulated_output_info; // add a labeled value to the text area function accumulate_output(str) { accumulated_output_info = accumulated_output_info + str + "\n"; } // convert a 8-bit value to a string function cvt_hex8(val) { var vh = (val >>> 4) & 0x0f; return vh.toString(16) + (val & 0x0f).toString(16); } // convert a 32-bit value to a 8-char hex string function cvt_hex32(val) { var str = ""; var i; var v; for (i = 7; i >= 0; i--) { v = (val >>> (i * 4)) & 0x0f; str += v.toString(16); } return str; } // convert a two-digit hex value to a number function cvt_byte(str) { // get the first hex digit var val1 = str.charCodeAt(0); // do some error checking if (val1 >= 48 && val1 <= 57) // have a valid digit 0-9 val1 -= 48; else if (val1 >= 65 && val1 <= 70) // have a valid digit A-F val1 -= 55; else if (val1 >= 97 && val1 <= 102) // have a valid digit A-F val1 -= 87; else { // not 0-9 or A-F, complain window.alert(str.charAt(1) + " is not a valid hex digit"); return -1; } // get the second hex digit var val2 = str.charCodeAt(1); // do some error checking if (val2 >= 48 && val2 <= 57) // have a valid digit 0-9 val2 -= 48; else if (val2 >= 65 && val2 <= 70) // have a valid digit A-F val2 -= 55; else if (val2 >= 97 && val2 <= 102) // have a valid digit A-F val2 -= 87; else { // not 0-9 or A-F, complain window.alert(str.charAt(2) + " is not a valid hex digit"); return -1; } // all is ok, return the value return val1 * 16 + val2; } // add a byte to the output function accumulate_byte(label, val) { accumulated_output_info += label + cvt_hex8(val) + "\n"; } // add a word to the output function accumulate_wordarray(label, ary) { var i, j; accumulated_output_info += label + " "; // process the four elements in this word for (j = 0; j < 4; j++) accumulated_output_info += " " + cvt_hex8(ary[j]); // mark the end of the word accumulated_output_info += "\n"; } // add an array to the output function accumulate_array(label, ary) { var i, j; var spacer = ""; // build a set of spaces of equal length to the label while (spacer.length < label.length) spacer += " "; // build the table for (i = 0; i < 16; i += 4) { // add label/spaces if (i == 0) accumulated_output_info += label + " "; else accumulated_output_info += spacer + " "; // process the four elements in this "row" for (j = 0; j < 4; j++) accumulated_output_info += " " + cvt_hex8(ary[i + j]); // mark the end of this row accumulated_output_info += "\n"; } } // S-Box substitution table var S_enc = new Array( 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16); // inverse S-Box for decryptions var S_dec = new Array( 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d); // convert two-dimensional indicies to one-dim array indices var I00 = 0; var I01 = 1; var I02 = 2; var I03 = 3; var I10 = 4; var I11 = 5; var I12 = 6; var I13 = 7; var I20 = 8; var I21 = 9; var I22 = 10; var I23 = 11; var I30 = 12; var I31 = 13; var I32 = 14; var I33 = 15; // conversion function for non-constant subscripts // assume subscript range 0..3 function I(x, y) { return (x * 4) + y; } // remove spaces from input function remove_spaces(instr) { var i; var outstr = ""; for (i = 0; i < instr.length; i++) if (instr.charAt(i) != " ") // not a space, include it outstr += instr.charAt(i); return outstr; } // get the message to encrypt/decrypt or the key // return as a 16-byte array function get_value(lbl, str, isASCII) { var dbyte = new Array(16); var i; var val; // one hex digit if (isASCII) { // check length of data if (str.length > 16) { window.alert(lbl + " is too long, using the first 16 ASCII characters"); } // have ASCII data // 16 characters? if (str.length >= 16) { // 16 or more characters for (i = 0; i < 16; i++) { dbyte[i] = str.charCodeAt(i); } } else { // less than 16 characters - fill with NULLs for (i = 0; i < str.length; i++) { dbyte[i] = str.charCodeAt(i); } for (i = str.length; i < 16; i++) { dbyte[i] = 0; } } } else { // have hex data - remove any spaces they used, then convert str = remove_spaces(str); // check length of data if (str.length != 32) { window.alert(lbl + " length wrong: Is " + str.length + " hex digits, but must be 128 bits (32 hex digits)"); dbyte[0] = -1; return dbyte; } for (i = 0; i < 16; i++) { // isolate and convert this substring dbyte[i] = cvt_byte(str.substr(i * 2, 2)); if (dbyte[i] < 0) { // have an error dbyte[0] = -1; return dbyte; } } // for i } // if isASCII // return successful conversion return dbyte; } //do the AES GF(2**8) multiplication // do this by the shift-and-"add" approach function aes_mul(a, b) { var res = 0; while (a > 0) { if ((a & 1) != 0) res = res ^ b; // "add" to the result a >>>= 1; // shift a to get next higher-order bit b <<= 1; // shift multiplier also } // now reduce it modulo x**8 + x**4 + x**3 + x + 1 var hbit = 0x10000; // bit to test if we need to take action var modulus = 0x11b00; // modulus - XOR by this to change value while (hbit >= 0x100) { if ((res & hbit) != 0) // if the high-order bit is set res ^= modulus; // XOR with the modulus // prepare for the next loop hbit >>= 1; modulus >>= 1; } return res; } // apply the S-box substitution to the key expansion function SubWord(word_ary) { var i; for (i = 0; i < 16; i++) word_ary[i] = S_enc[word_ary[i]]; return word_ary; } // rotate the bytes in a word function RotWord(word_ary) { return new Array(word_ary[1], word_ary[2], word_ary[3], word_ary[0]); } // calculate the first item Rcon[i] = { x^(i-1), 0, 0, 0 } // note we only return the first item function Rcon(exp) { var val = 2; var result = 1; // remember to calculate x^(exp-1) exp--; // process the exponent using normal shift and multiply while (exp > 0) { if ((exp & 1) != 0) result = aes_mul(result, val); // square the value val = aes_mul(val, val); // move to the next bit exp >>= 1; } return result; } // round key generation // return a byte array with the expanded key information function key_expand(key) { var temp = new Array(4); var i, j; var w = new Array(4 * 11); // copy initial key stuff for (i = 0; i < 16; i++) { w[i] = key[i]; } accumulate_wordarray("w[0] = ", w.slice(0, 4)); accumulate_wordarray("w[1] = ", w.slice(4, 8)); accumulate_wordarray("w[2] = ", w.slice(8, 12)); accumulate_wordarray("w[3] = ", w.slice(12, 16)); // generate rest of key schedule using 32-bit words i = 4; while (i < 44) // blocksize * ( rounds + 1 ) { // copy word W[i-1] to temp for (j = 0; j < 4; j++) temp[j] = w[(i - 1) * 4 + j]; if (i % 4 == 0) { // temp = SubWord(RotWord(temp)) ^ Rcon[i/4]; temp = RotWord(temp); accumulate_wordarray("RotWord()=", temp); temp = SubWord(temp); accumulate_wordarray("SubWord()=", temp); temp[0] ^= Rcon(i >>> 2); accumulate_wordarray(" ^ Rcon()=", temp); } // word = word ^ temp for (j = 0; j < 4; j++) w[i * 4 + j] = w[(i - 4) * 4 + j] ^ temp[j]; accumulate_wordarray("w[" + i + "] = ", w.slice(i * 4, i * 4 + 4)); i++; } return w; } // do S-Box substitution function SubBytes(state, Sbox) { var i; for (i = 0; i < 16; i++) state[i] = Sbox[state[i]]; return state; } // shift each row as appropriate function ShiftRows(state) { var t0, t1, t2, t3; // top row (row 0) isn't shifted // next row (row 1) rotated left 1 place t0 = state[I10]; t1 = state[I11]; t2 = state[I12]; t3 = state[I13]; state[I10] = t1; state[I11] = t2; state[I12] = t3; state[I13] = t0; // next row (row 2) rotated left 2 places t0 = state[I20]; t1 = state[I21]; t2 = state[I22]; t3 = state[I23]; state[I20] = t2; state[I21] = t3; state[I22] = t0; state[I23] = t1; // bottom row (row 3) rotated left 3 places t0 = state[I30]; t1 = state[I31]; t2 = state[I32]; t3 = state[I33]; state[I30] = t3; state[I31] = t0; state[I32] = t1; state[I33] = t2; return state; } // inverset shift each row as appropriate function InvShiftRows(state) { var t0, t1, t2, t3; // top row (row 0) isn't shifted // next row (row 1) rotated left 1 place t0 = state[I10]; t1 = state[I11]; t2 = state[I12]; t3 = state[I13]; state[I10] = t3; state[I11] = t0; state[I12] = t1; state[I13] = t2; // next row (row 2) rotated left 2 places t0 = state[I20]; t1 = state[I21]; t2 = state[I22]; t3 = state[I23]; state[I20] = t2; state[I21] = t3; state[I22] = t0; state[I23] = t1; // bottom row (row 3) rotated left 3 places t0 = state[I30]; t1 = state[I31]; t2 = state[I32]; t3 = state[I33]; state[I30] = t1; state[I31] = t2; state[I32] = t3; state[I33] = t0; return state; } // process column info function MixColumns(state) { var col; var c0, c1, c2, c3; for (col = 0; col < 4; col++) { c0 = state[I(0, col)]; c1 = state[I(1, col)]; c2 = state[I(2, col)]; c3 = state[I(3, col)]; // do mixing, and put back into array state[I(0, col)] = aes_mul(2, c0) ^ aes_mul(3, c1) ^ c2 ^ c3; state[I(1, col)] = c0 ^ aes_mul(2, c1) ^ aes_mul(3, c2) ^ c3; state[I(2, col)] = c0 ^ c1 ^ aes_mul(2, c2) ^ aes_mul(3, c3); state[I(3, col)] = aes_mul(3, c0) ^ c1 ^ c2 ^ aes_mul(2, c3); } return state; } // inverse process column info function InvMixColumns(state) { var col; var c0, c1, c2, c3; for (col = 0; col < 4; col++) { c0 = state[I(0, col)]; c1 = state[I(1, col)]; c2 = state[I(2, col)]; c3 = state[I(3, col)]; // do inverse mixing, and put back into array state[I(0, col)] = aes_mul(0x0e, c0) ^ aes_mul(0x0b, c1) ^ aes_mul(0x0d, c2) ^ aes_mul(0x09, c3); state[I(1, col)] = aes_mul(0x09, c0) ^ aes_mul(0x0e, c1) ^ aes_mul(0x0b, c2) ^ aes_mul(0x0d, c3); state[I(2, col)] = aes_mul(0x0d, c0) ^ aes_mul(0x09, c1) ^ aes_mul(0x0e, c2) ^ aes_mul(0x0b, c3); state[I(3, col)] = aes_mul(0x0b, c0) ^ aes_mul(0x0d, c1) ^ aes_mul(0x09, c2) ^ aes_mul(0x0e, c3); } return state; } // insert subkey information function AddRoundKey(state, w, base) { var col; for (col = 0; col < 4; col++) { state[I(0, col)] ^= w[base + col * 4]; state[I(1, col)] ^= w[base + col * 4 + 1]; state[I(2, col)] ^= w[base + col * 4 + 2]; state[I(3, col)] ^= w[base + col * 4 + 3]; } return state; } // return a transposed array function transpose(msg) { var row, col; var state = new Array(16); for (row = 0; row < 4; row++) for (col = 0; col < 4; col++) state[I(row, col)] = msg[I(col, row)]; return state; } // final AES state var AES_output = new Array(16); // format AES output // -- uses the global array DES_output function format_AES_output() { var i; var bits; var str = ""; // what type of data do we have to work with? if (false)//document.stuff.outtype[0].checked { // convert each set of bits back to ASCII for (i = 0; i < 16; i++) str += String.fromCharCode(AES_output[i]); } else { // output hexdecimal data (insert spaces) str = cvt_hex8(AES_output[0]); for (i = 1; i < 16; i++) { str += " " + cvt_hex8(AES_output[i]); } } // copy to textbox outdata_value = str; } // do encrytion function aes_encrypt() { var w = new Array(44); // subkey information var state = new Array(16); // working state var round; accumulated_output_info = ""; // get the message from the user // also check if it is ASCII or hex var msg = get_value("Message", indata_value, false);//document.stuff.intype[0].checked // problems?? if (msg[0] < 0) { //details_value = accumulated_output_info; return; } accumulate_array("Input bits", msg); // get the key from the user var key = get_value("Key", key_value, false); // problems?? if (key[0] < 0) { //details_value = accumulated_output_info; return; } accumulate_array("Key bits", key); // expand the key accumulate_output("密钥扩展"); w = key_expand(key); // initial state = message in columns (transposed from what we input) state = transpose(msg); accumulate_array("Initial state", state); // display the round key - Transpose due to the way it is stored/used accumulate_output("轮密码加"); accumulate_array("Round Key", transpose(w.slice(0, 16))); state = AddRoundKey(state, w, 0); for (round = 1; round < 10; round++) { accumulate_array("Round " + round, state); accumulate_output("字节代替"); state = SubBytes(state, S_enc); accumulate_array("After SubBytes", state); accumulate_output("行移位"); state = ShiftRows(state); accumulate_array("After ShiftRows", state); accumulate_output("列混淆"); state = MixColumns(state); accumulate_array("After MixColumns", state); // display the round key - Transpose due to the way it is stored/used accumulate_array("Round Key", transpose(w.slice(round * 4 * 4, round * 16 + 16))); accumulate_output("轮密码加"); // note here the spec uses 32-bit words, we are using bytes, so an extra *4 state = AddRoundKey(state, w, round * 4 * 4); } accumulate_output("字节代替"); SubBytes(state, S_enc); accumulate_array("After SubBytes", state); accumulate_output("行移位"); ShiftRows(state); accumulate_array("After ShiftRows", state); accumulate_output("轮密码加"); AddRoundKey(state, w, 10 * 4 * 4); accumulate_array("Output", state); // process output AES_output = transpose(state); format_AES_output(); //details_value = accumulated_output_info; } // do decryption function aes_decrypt() { var w = new Array(44); // subkey information var state = new Array(16); // working state var round; accumulated_output_info = ""; //indata_value = utf16ToUtf8(indata_value.replace(" ","")); console.log("aes_decrypt-indata_value:",indata_value); // get the message from the user // also check if it is ASCII or hex var msg = get_value("Message", indata_value.toString(), false);//document.stuff.intype[0].checked // problems?? if (msg[0] < 0) { //details_value = accumulated_output_info; return; } accumulate_array("Input bits", msg); // get the key from the user var key = get_value("Key", key_value, false); // problems?? if (key[0] < 0) { //details_value = accumulated_output_info; return; } accumulate_array("Key bits", key); // expand the key w = key_expand(key); // initial state = message state = transpose(msg); accumulate_array("Initial state", state); // display the round key - Transpose due to the way it is stored/used accumulate_array("Round Key", transpose(w.slice(10 * 4 * 4, 10 * 4 * 4 + 16))); state = AddRoundKey(state, w, 10 * 4 * 4); for (round = 9; round >= 1; round--) { accumulate_array("Round " + round, state); state = InvShiftRows(state); accumulate_array("After InvShiftRows", state); state = SubBytes(state, S_dec); accumulate_array("After SubBytes", state); // display the round key - Transpose due to the way it is stored/used accumulate_array("Round Key", transpose(w.slice(round * 4 * 4, round * 16 + 16))); // note here the spec uses 32-bit words, we are using bytes, so an extra *4 state = AddRoundKey(state, w, round * 4 * 4); accumulate_array("After AddRoundKey", state); state = InvMixColumns(state); } InvShiftRows(state); accumulate_array("After InvShiftRows", state); SubBytes(state, S_dec); accumulate_array("After SubBytes", state); AddRoundKey(state, w, 0); accumulate_array("Output", state); // process output AES_output = transpose(state); format_AES_output(); //details_value = accumulated_output_info; }