最近在看一些深度学习相关的书,感觉对于参考文献1中的mini-batch部分理解得不是很透彻,主要是因为神经网络的输入开始变成批数据,加之对python的numpy不是很熟了。所以总想写点什么,一来有助于加深对于知识的理解,二来也算是分享知识咯。
闲话少叙,让我们进入正题。
在机器学习中,学习的目标是选择期望风险
严格地说,我们应该计算所有训练数据的损失函数的总和,以此来更新模型参数(Batch Gradient Descent)。但随着数据集的不断增大,以ImagNet数据集为例,该数据集的数据量有百万之多,计算所有数据的损失函数之和显然是不现实的。若采用计算单个样本的损失函数更新参数的方法(Stochastic Gradient Descent),会导致
于是,我们采取一种折衷的想法,即取一部分数据,作为全部数据的代表,让神经网络从这每一批数据中学习,这里的“一部分数据”称为mini-batch,这种方法称为mini-batch学习。
以下图为例,蓝色的线表示Batch Gradient Descent,紫色的线表示Stochastic Gradient Descent,绿色的线表示Mini-Batch Gradient Descent。
从上图可以看出,Mini-Batch相当于结合了Batch Gradient Descent和Stochastic Gradient Descent各自的优点,既能利用向量化方法提高运算速度,又能基本接近全局最小值。
对于mini-batch学习的介绍到此为止。下面我们将MINIST数据集上的分类问题作为背景,以交叉熵cross-entropy损失函数为例,来实现一下mini-bacth版的cross-entropy error。
给出cross-entropy error的定义如下:
其中
等式1表示的是针对单个数据的损失函数,现在我们给出在mini-batch下的损失函数,如下
其中N表示这一部分数据的数量,
我们来看一下用Python如何实现mini-batch版的cross-entropy error。针对监督数据
此外,需要明确的一点是,对于一个分类神经网络,最后一层经过softmax函数处理后,输出
首先,对于
def cross_entropy_error(y,t):
batch_size = y.shape[0]
return -np.sum(t * np.log(y + 1e-7)) / batch_size
在上面的代码中,我们在y上加了一个微小值,防止出现np.log(0)的情况,因为np.log(0)会变成负无穷大-inf,从而导致后续的计算无法继续进行。在等式2中*
做element-wise运算,即对应元素相乘。
但当我们希望同时能够处理单个数据和批量数据时,代码块1还不能满足我们的要求。因为当
def cross_entropy_error(y,t):
if y.ndim == 1:
y = y.reshape(1,y.size)
t = t.reshape(1,t.size)
batch_size = y.shape[0]
return -np.sum(t * np.log(y + 1e-7)) / batch_size
最后,来讨论一下
def cross_entropy_error(y,t):
if y.ndim == 1:
y = y.reshape(1,y.size)
t = t.reshape(1,t.size)
batch_size = y.shape[0]
return -np.sum(1 * np.log(y[np.arange(batch_size),t]+1e-7))/batch_size
在上面的代码中,y[np.arange(batch_size),t]
表示将从神经网络的输出中抽出与正确解标签相对应的元素。
参考文献
[1] 深度学习入门
[2] DeepLearning.ai深度学习课程笔记
[3] 统计学习方法