• 机器学习实战系列[一]:工业蒸汽量预测(最新版本上篇)含数据探索特征工程等


    机器学习实战系列[一]:工业蒸汽量预测

    • 背景介绍

    火力发电的基本原理是:燃料在燃烧时加热水生成蒸汽,蒸汽压力推动汽轮机旋转,然后汽轮机带动发电机旋转,产生电能。在这一系列的能量转化中,影响发电效率的核心是锅炉的燃烧效率,即燃料燃烧加热水产生高温高压蒸汽。锅炉的燃烧效率的影响因素很多,包括锅炉的可调参数,如燃烧给量,一二次风,引风,返料风,给水水量;以及锅炉的工况,比如锅炉床温、床压,炉膛温度、压力,过热器的温度等。

    • 相关描述

    经脱敏后的锅炉传感器采集的数据(采集频率是分钟级别),根据锅炉的工况,预测产生的蒸汽量。

    • 数据说明

    数据分成训练数据(train.txt)和测试数据(test.txt),其中字段”V0”-“V37”,这38个字段是作为特征变量,”target”作为目标变量。选手利用训练数据训练出模型,预测测试数据的目标变量,排名结果依据预测结果的MSE(mean square error)。

    • 结果评估

    预测结果以mean square error作为评判标准。

    原项目链接:https://www.heywhale.com/home/column/64141d6b1c8c8b518ba97dcc

    1.数据探索性分析

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    
    from scipy import stats
    
    import warnings
    warnings.filterwarnings("ignore")
     
    %matplotlib inline
    
    # 下载需要用到的数据集
    !wget http://tianchi-media.oss-cn-beijing.aliyuncs.com/DSW/Industrial_Steam_Forecast/zhengqi_test.txt
    !wget http://tianchi-media.oss-cn-beijing.aliyuncs.com/DSW/Industrial_Steam_Forecast/zhengqi_train.txt
    
    --2023-03-23 18:10:23--  http://tianchi-media.oss-cn-beijing.aliyuncs.com/DSW/Industrial_Steam_Forecast/zhengqi_test.txt
    正在解析主机 tianchi-media.oss-cn-beijing.aliyuncs.com (tianchi-media.oss-cn-beijing.aliyuncs.com)... 49.7.22.39
    正在连接 tianchi-media.oss-cn-beijing.aliyuncs.com (tianchi-media.oss-cn-beijing.aliyuncs.com)|49.7.22.39|:80... 已连接。
    已发出 HTTP 请求,正在等待回应... 200 OK
    长度: 466959 (456K) [text/plain]
    正在保存至: “zhengqi_test.txt.1”
    
    zhengqi_test.txt.1  100%[===================>] 456.01K  --.-KB/s    in 0.04s   
    
    2023-03-23 18:10:23 (10.0 MB/s) - 已保存 “zhengqi_test.txt.1” [466959/466959])
    
    --2023-03-23 18:10:23--  http://tianchi-media.oss-cn-beijing.aliyuncs.com/DSW/Industrial_Steam_Forecast/zhengqi_train.txt
    正在解析主机 tianchi-media.oss-cn-beijing.aliyuncs.com (tianchi-media.oss-cn-beijing.aliyuncs.com)... 49.7.22.39
    正在连接 tianchi-media.oss-cn-beijing.aliyuncs.com (tianchi-media.oss-cn-beijing.aliyuncs.com)|49.7.22.39|:80... 已连接。
    已发出 HTTP 请求,正在等待回应... 200 OK
    长度: 714370 (698K) [text/plain]
    正在保存至: “zhengqi_train.txt.1”
    
    zhengqi_train.txt.1 100%[===================>] 697.63K  --.-KB/s    in 0.04s   
    
    2023-03-23 18:10:24 (17.9 MB/s) - 已保存 “zhengqi_train.txt.1” [714370/714370])
    
    # **读取数据文件**
    # 使用Pandas库`read_csv()`函数进行数据读取,分割符为‘\t’
    train_data_file = "./zhengqi_train.txt"
    test_data_file =  "./zhengqi_test.txt"
    
    train_data = pd.read_csv(train_data_file, sep='\t', encoding='utf-8')
    test_data = pd.read_csv(test_data_file, sep='\t', encoding='utf-8')
    

    1.1 查看数据信息

    #查看特征变量信息
    train_data.info()
    
     'pandas.core.frame.DataFrame'>
    RangeIndex: 2888 entries, 0 to 2887
    Data columns (total 39 columns):
     #   Column  Non-Null Count  Dtype  
    ---  ------  --------------  -----  
     0   V0      2888 non-null   float64
     1   V1      2888 non-null   float64
     2   V2      2888 non-null   float64
     3   V3      2888 non-null   float64
     4   V4      2888 non-null   float64
     5   V5      2888 non-null   float64
     6   V6      2888 non-null   float64
     7   V7      2888 non-null   float64
     8   V8      2888 non-null   float64
     9   V9      2888 non-null   float64
     10  V10     2888 non-null   float64
     11  V11     2888 non-null   float64
     12  V12     2888 non-null   float64
     13  V13     2888 non-null   float64
     14  V14     2888 non-null   float64
     15  V15     2888 non-null   float64
     16  V16     2888 non-null   float64
     17  V17     2888 non-null   float64
     18  V18     2888 non-null   float64
     19  V19     2888 non-null   float64
     20  V20     2888 non-null   float64
     21  V21     2888 non-null   float64
     22  V22     2888 non-null   float64
     23  V23     2888 non-null   float64
     24  V24     2888 non-null   float64
     25  V25     2888 non-null   float64
     26  V26     2888 non-null   float64
     27  V27     2888 non-null   float64
     28  V28     2888 non-null   float64
     29  V29     2888 non-null   float64
     30  V30     2888 non-null   float64
     31  V31     2888 non-null   float64
     32  V32     2888 non-null   float64
     33  V33     2888 non-null   float64
     34  V34     2888 non-null   float64
     35  V35     2888 non-null   float64
     36  V36     2888 non-null   float64
     37  V37     2888 non-null   float64
     38  target  2888 non-null   float64
    dtypes: float64(39)
    memory usage: 880.1 KB
    

    此训练集数据共有2888个样本,数据中有V0-V37共计38个特征变量,变量类型都为数值类型,所有数据特征没有缺失值数据;
    数据字段由于采用了脱敏处理,删除了特征数据的具体含义;target字段为标签变量

    test_data.info()
    
     'pandas.core.frame.DataFrame'>
    RangeIndex: 1925 entries, 0 to 1924
    Data columns (total 38 columns):
     #   Column  Non-Null Count  Dtype  
    ---  ------  --------------  -----  
     0   V0      1925 non-null   float64
     1   V1      1925 non-null   float64
     2   V2      1925 non-null   float64
     3   V3      1925 non-null   float64
     4   V4      1925 non-null   float64
     5   V5      1925 non-null   float64
     6   V6      1925 non-null   float64
     7   V7      1925 non-null   float64
     8   V8      1925 non-null   float64
     9   V9      1925 non-null   float64
     10  V10     1925 non-null   float64
     11  V11     1925 non-null   float64
     12  V12     1925 non-null   float64
     13  V13     1925 non-null   float64
     14  V14     1925 non-null   float64
     15  V15     1925 non-null   float64
     16  V16     1925 non-null   float64
     17  V17     1925 non-null   float64
     18  V18     1925 non-null   float64
     19  V19     1925 non-null   float64
     20  V20     1925 non-null   float64
     21  V21     1925 non-null   float64
     22  V22     1925 non-null   float64
     23  V23     1925 non-null   float64
     24  V24     1925 non-null   float64
     25  V25     1925 non-null   float64
     26  V26     1925 non-null   float64
     27  V27     1925 non-null   float64
     28  V28     1925 non-null   float64
     29  V29     1925 non-null   float64
     30  V30     1925 non-null   float64
     31  V31     1925 non-null   float64
     32  V32     1925 non-null   float64
     33  V33     1925 non-null   float64
     34  V34     1925 non-null   float64
     35  V35     1925 non-null   float64
     36  V36     1925 non-null   float64
     37  V37     1925 non-null   float64
    dtypes: float64(38)
    memory usage: 571.6 KB
    

    测试集数据共有1925个样本,数据中有V0-V37共计38个特征变量,变量类型都为数值类型

    # 查看数据统计信息
    train_data.describe()
    
    V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 ... V29 V30 V31 V32 V33 V34 V35 V36 V37 target
    count 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 ... 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000
    mean 0.123048 0.056068 0.289720 -0.067790 0.012921 -0.558565 0.182892 0.116155 0.177856 -0.169452 ... 0.097648 0.055477 0.127791 0.020806 0.007801 0.006715 0.197764 0.030658 -0.130330 0.126353
    std 0.928031 0.941515 0.911236 0.970298 0.888377 0.517957 0.918054 0.955116 0.895444 0.953813 ... 1.061200 0.901934 0.873028 0.902584 1.006995 1.003291 0.985675 0.970812 1.017196 0.983966
    min -4.335000 -5.122000 -3.420000 -3.956000 -4.742000 -2.182000 -4.576000 -5.048000 -4.692000 -12.891000 ... -2.912000 -4.507000 -5.859000 -4.053000 -4.627000 -4.789000 -5.695000 -2.608000 -3.630000 -3.044000
    25% -0.297000 -0.226250 -0.313000 -0.652250 -0.385000 -0.853000 -0.310000 -0.295000 -0.159000 -0.390000 ... -0.664000 -0.283000 -0.170250 -0.407250 -0.499000 -0.290000 -0.202500 -0.413000 -0.798250 -0.350250
    50% 0.359000 0.272500 0.386000 -0.044500 0.110000 -0.466000 0.388000 0.344000 0.362000 0.042000 ... -0.023000 0.053500 0.299500 0.039000 -0.040000 0.160000 0.364000 0.137000 -0.185500 0.313000
    75% 0.726000 0.599000 0.918250 0.624000 0.550250 -0.154000 0.831250 0.782250 0.726000 0.042000 ... 0.745250 0.488000 0.635000 0.557000 0.462000 0.273000 0.602000 0.644250 0.495250 0.793250
    max 2.121000 1.918000 2.828000 2.457000 2.689000 0.489000 1.895000 1.918000 2.245000 1.335000 ... 4.580000 2.689000 2.013000 2.395000 5.465000 5.110000 2.324000 5.238000 3.000000 2.538000

    8 rows × 39 columns

    test_data.describe()
    
    V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 ... V28 V29 V30 V31 V32 V33 V34 V35 V36 V37
    count 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 ... 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000
    mean -0.184404 -0.083912 -0.434762 0.101671 -0.019172 0.838049 -0.274092 -0.173971 -0.266709 0.255114 ... -0.206871 -0.146463 -0.083215 -0.191729 -0.030782 -0.011433 -0.009985 -0.296895 -0.046270 0.195735
    std 1.073333 1.076670 0.969541 1.034925 1.147286 0.963043 1.054119 1.040101 1.085916 1.014394 ... 1.064140 0.880593 1.126414 1.138454 1.130228 0.989732 0.995213 0.946896 1.040854 0.940599
    min -4.814000 -5.488000 -4.283000 -3.276000 -4.921000 -1.168000 -5.649000 -5.625000 -6.059000 -6.784000 ... -2.435000 -2.413000 -4.507000 -7.698000 -4.057000 -4.627000 -4.789000 -7.477000 -2.608000 -3.346000
    25% -0.664000 -0.451000 -0.978000 -0.644000 -0.497000 0.122000 -0.732000 -0.509000 -0.775000 -0.390000 ... -0.453000 -0.818000 -0.339000 -0.476000 -0.472000 -0.460000 -0.290000 -0.349000 -0.593000 -0.432000
    50% 0.065000 0.195000 -0.267000 0.220000 0.118000 0.437000 -0.082000 0.018000 -0.004000 0.401000 ... -0.445000 -0.199000 0.010000 0.100000 0.155000 -0.040000 0.160000 -0.270000 0.083000 0.152000
    75% 0.549000 0.589000 0.278000 0.793000 0.610000 1.928000 0.457000 0.515000 0.482000 0.904000 ... -0.434000 0.468000 0.447000 0.471000 0.627000 0.419000 0.273000 0.364000 0.651000 0.797000
    max 2.100000 2.120000 1.946000 2.603000 4.475000 3.176000 1.528000 1.394000 2.408000 1.766000 ... 4.656000 3.022000 3.139000 1.428000 2.299000 5.465000 5.110000 1.671000 2.861000 3.021000

    8 rows × 38 columns

    上面数据显示了数据的统计信息,例如样本数,数据的均值mean,标准差std,最小值,最大值等

    # 查看数据字段信息
    train_data.head()
    
    V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 ... V29 V30 V31 V32 V33 V34 V35 V36 V37 target
    0 0.566 0.016 -0.143 0.407 0.452 -0.901 -1.812 -2.360 -0.436 -2.114 ... 0.136 0.109 -0.615 0.327 -4.627 -4.789 -5.101 -2.608 -3.508 0.175
    1 0.968 0.437 0.066 0.566 0.194 -0.893 -1.566 -2.360 0.332 -2.114 ... -0.128 0.124 0.032 0.600 -0.843 0.160 0.364 -0.335 -0.730 0.676
    2 1.013 0.568 0.235 0.370 0.112 -0.797 -1.367 -2.360 0.396 -2.114 ... -0.009 0.361 0.277 -0.116 -0.843 0.160 0.364 0.765 -0.589 0.633
    3 0.733 0.368 0.283 0.165 0.599 -0.679 -1.200 -2.086 0.403 -2.114 ... 0.015 0.417 0.279 0.603 -0.843 -0.065 0.364 0.333 -0.112 0.206
    4 0.684 0.638 0.260 0.209 0.337 -0.454 -1.073 -2.086 0.314 -2.114 ... 0.183 1.078 0.328 0.418 -0.843 -0.215 0.364 -0.280 -0.028 0.384

    5 rows × 39 columns

    上面显示训练集前5条数据的基本信息,可以看到数据都是浮点型数据,数据都是数值型连续型特征

    test_data.head()
    
    V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 ... V28 V29 V30 V31 V32 V33 V34 V35 V36 V37
    0 0.368 0.380 -0.225 -0.049 0.379 0.092 0.550 0.551 0.244 0.904 ... -0.449 0.047 0.057 -0.042 0.847 0.534 -0.009 -0.190 -0.567 0.388
    1 0.148 0.489 -0.247 -0.049 0.122 -0.201 0.487 0.493 -0.127 0.904 ... -0.443 0.047 0.560 0.176 0.551 0.046 -0.220 0.008 -0.294 0.104
    2 -0.166 -0.062 -0.311 0.046 -0.055 0.063 0.485 0.493 -0.227 0.904 ... -0.458 -0.398 0.101 0.199 0.634 0.017 -0.234 0.008 0.373 0.569
    3 0.102 0.294 -0.259 0.051 -0.183 0.148 0.474 0.504 0.010 0.904 ... -0.456 -0.398 1.007 0.137 1.042 -0.040 -0.290 0.008 -0.666 0.391
    4 0.300 0.428 0.208 0.051 -0.033 0.116 0.408 0.497 0.155 0.904 ... -0.458 -0.776 0.291 0.370 0.181 -0.040 -0.290 0.008 -0.140 -0.497

    5 rows × 38 columns

    1.2 可视化探索数据

    fig = plt.figure(figsize=(4, 6))  # 指定绘图对象宽度和高度
    sns.boxplot(train_data['V0'],orient="v", width=0.5)
    
    .axes._subplots.AxesSubplot at 0x7faf89f46950>
    

    # 画箱式图
    # column = train_data.columns.tolist()[:39]  # 列表头
    # fig = plt.figure(figsize=(20, 40))  # 指定绘图对象宽度和高度
    # for i in range(38):
    #     plt.subplot(13, 3, i + 1)  # 13行3列子图
    #     sns.boxplot(train_data[column[i]], orient="v", width=0.5)  # 箱式图
    #     plt.ylabel(column[i], fontsize=8)
    # plt.show()
    #箱图自行打开
    

    查看数据分布图

    • 查看特征变量‘V0’的数据分布直方图,并绘制Q-Q图查看数据是否近似于正态分布
    plt.figure(figsize=(10,5))
    
    ax=plt.subplot(1,2,1)
    sns.distplot(train_data['V0'],fit=stats.norm)
    ax=plt.subplot(1,2,2)
    res = stats.probplot(train_data['V0'], plot=plt)
    

    查看查看所有数据的直方图和Q-Q图,查看训练集的数据是否近似于正态分布

    # train_cols = 6
    # train_rows = len(train_data.columns)
    # plt.figure(figsize=(4*train_cols,4*train_rows))
    
    # i=0
    # for col in train_data.columns:
    #     i+=1
    #     ax=plt.subplot(train_rows,train_cols,i)
    #     sns.distplot(train_data[col],fit=stats.norm)
        
    #     i+=1
    #     ax=plt.subplot(train_rows,train_cols,i)
    #     res = stats.probplot(train_data[col], plot=plt)
    # plt.show()
    #QQ图自行打开
    

    由上面的数据分布图信息可以看出,很多特征变量(如'V1','V9','V24','V28'等)的数据分布不是正态的,数据并不跟随对角线,后续可以使用数据变换对数据进行转换。

    对比同一特征变量‘V0’下,训练集数据和测试集数据的分布情况,查看数据分布是否一致

    ax = sns.kdeplot(train_data['V0'], color="Red", shade=True)
    ax = sns.kdeplot(test_data['V0'], color="Blue", shade=True)
    ax.set_xlabel('V0')
    ax.set_ylabel("Frequency")
    ax = ax.legend(["train","test"])
    

    查看所有特征变量下,训练集数据和测试集数据的分布情况,分析并寻找出数据分布不一致的特征变量。

    # dist_cols = 6
    # dist_rows = len(test_data.columns)
    # plt.figure(figsize=(4*dist_cols,4*dist_rows))
    
    # i=1
    # for col in test_data.columns:
    #     ax=plt.subplot(dist_rows,dist_cols,i)
    #     ax = sns.kdeplot(train_data[col], color="Red", shade=True)
    #     ax = sns.kdeplot(test_data[col], color="Blue", shade=True)
    #     ax.set_xlabel(col)
    #     ax.set_ylabel("Frequency")
    #     ax = ax.legend(["train","test"])
        
    #     i+=1
    # plt.show()
    #自行打开
    

    查看特征'V5', 'V17', 'V28', 'V22', 'V11', 'V9'数据的数据分布

    drop_col = 6
    drop_row = 1
    
    plt.figure(figsize=(5*drop_col,5*drop_row))
    
    i=1
    for col in ["V5","V9","V11","V17","V22","V28"]:
        ax =plt.subplot(drop_row,drop_col,i)
        ax = sns.kdeplot(train_data[col], color="Red", shade=True)
        ax = sns.kdeplot(test_data[col], color="Blue", shade=True)
        ax.set_xlabel(col)
        ax.set_ylabel("Frequency")
        ax = ax.legend(["train","test"])
        
        i+=1
    plt.show()
    

    由上图的数据分布可以看到特征'V5','V9','V11','V17','V22','V28' 训练集数据与测试集数据分布不一致,会导致模型泛化能力差,采用删除此类特征方法。

    drop_columns = ['V5','V9','V11','V17','V22','V28']
    # 合并训练集和测试集数据,并可视化训练集和测试集数据特征分布图
    

    可视化线性回归关系

    • 查看特征变量‘V0’与'target'变量的线性回归关系
    fcols = 2
    frows = 1
    
    plt.figure(figsize=(8,4))
    
    ax=plt.subplot(1,2,1)
    sns.regplot(x='V0', y='target', data=train_data, ax=ax, 
                scatter_kws={'marker':'.','s':3,'alpha':0.3},
                line_kws={'color':'k'});
    plt.xlabel('V0')
    plt.ylabel('target')
    
    ax=plt.subplot(1,2,2)
    sns.distplot(train_data['V0'].dropna())
    plt.xlabel('V0')
    
    plt.show()
    

    1.2.2 查看变量间线性回归关系

    # fcols = 6
    # frows = len(test_data.columns)
    # plt.figure(figsize=(5*fcols,4*frows))
    
    # i=0
    # for col in test_data.columns:
    #     i+=1
    #     ax=plt.subplot(frows,fcols,i)
    #     sns.regplot(x=col, y='target', data=train_data, ax=ax, 
    #                 scatter_kws={'marker':'.','s':3,'alpha':0.3},
    #                 line_kws={'color':'k'});
    #     plt.xlabel(col)
    #     plt.ylabel('target')
        
    #     i+=1
    #     ax=plt.subplot(frows,fcols,i)
    #     sns.distplot(train_data[col].dropna())
        # plt.xlabel(col)
        #已注释图片生成,自行打开
    

    1.2.2 查看特征变量的相关性

    
    data_train1 = train_data.drop(['V5','V9','V11','V17','V22','V28'],axis=1)
    train_corr = data_train1.corr()
    train_corr
    
    V0 V1 V2 V3 V4 V6 V7 V8 V10 V12 ... V29 V30 V31 V32 V33 V34 V35 V36 V37 target
    V0 1.000000 0.908607 0.463643 0.409576 0.781212 0.189267 0.141294 0.794013 0.298443 0.751830 ... 0.302145 0.156968 0.675003 0.050951 0.056439 -0.019342 0.138933 0.231417 -0.494076 0.873212
    V1 0.908607 1.000000 0.506514 0.383924 0.657790 0.276805 0.205023 0.874650 0.310120 0.656186 ... 0.147096 0.175997 0.769745 0.085604 0.035129 -0.029115 0.146329 0.235299 -0.494043 0.871846
    V2 0.463643 0.506514 1.000000 0.410148 0.057697 0.615938 0.477114 0.703431 0.346006 0.059941 ... -0.275764 0.175943 0.653764 0.033942 0.050309 -0.025620 0.043648 0.316462 -0.734956 0.638878
    V3 0.409576 0.383924 0.410148 1.000000 0.315046 0.233896 0.197836 0.411946 0.321262 0.306397 ... 0.117610 0.043966 0.421954 -0.092423 -0.007159 -0.031898 0.080034 0.324475 -0.229613 0.512074
    V4 0.781212 0.657790 0.057697 0.315046 1.000000 -0.117529 -0.052370 0.449542 0.141129 0.927685 ... 0.659093 0.022807 0.447016 -0.026186 0.062367 0.028659 0.100010 0.113609 -0.031054 0.603984
    V6 0.189267 0.276805 0.615938 0.233896 -0.117529 1.000000 0.917502 0.468233 0.415660 -0.087312 ... -0.467980 0.188907 0.546535 0.144550 0.054210 -0.002914 0.044992 0.433804 -0.404817 0.370037
    V7 0.141294 0.205023 0.477114 0.197836 -0.052370 0.917502 1.000000 0.389987 0.310982 -0.036791 ... -0.311363 0.170113 0.475254 0.122707 0.034508 -0.019103 0.111166 0.340479 -0.292285 0.287815
    V8 0.794013 0.874650 0.703431 0.411946 0.449542 0.468233 0.389987 1.000000 0.419703 0.420557 ... -0.011091 0.150258 0.878072 0.038430 0.026843 -0.036297 0.179167 0.326586 -0.553121 0.831904
    V10 0.298443 0.310120 0.346006 0.321262 0.141129 0.415660 0.310982 0.419703 1.000000 0.140462 ... -0.105042 -0.036705 0.560213 -0.093213 0.016739 -0.026994 0.026846 0.922190 -0.045851 0.394767
    V12 0.751830 0.656186 0.059941 0.306397 0.927685 -0.087312 -0.036791 0.420557 0.140462 1.000000 ... 0.666775 0.028866 0.441963 -0.007658 0.046674 0.010122 0.081963 0.112150 -0.054827 0.594189
    V13 0.185144 0.157518 0.204762 -0.003636 0.075993 0.138367 0.110973 0.153299 -0.059553 0.098771 ... 0.008235 0.027328 0.113743 0.130598 0.157513 0.116944 0.219906 -0.024751 -0.379714 0.203373
    V14 -0.004144 -0.006268 -0.106282 -0.232677 0.023853 0.072911 0.163931 0.008138 -0.077543 0.020069 ... 0.056814 -0.004057 0.010989 0.106581 0.073535 0.043218 0.233523 -0.086217 0.010553 0.008424
    V15 0.314520 0.164702 -0.224573 0.143457 0.615704 -0.431542 -0.291272 0.018366 -0.046737 0.642081 ... 0.951314 -0.111311 0.011768 -0.104618 0.050254 0.048602 0.100817 -0.051861 0.245635 0.154020
    V16 0.347357 0.435606 0.782474 0.394517 0.023818 0.847119 0.752683 0.680031 0.546975 0.025736 ... -0.342210 0.154794 0.778538 0.041474 0.028878 -0.054775 0.082293 0.551880 -0.420053 0.536748
    V18 0.148622 0.123862 0.132105 0.022868 0.136022 0.110570 0.098691 0.093682 -0.024693 0.119833 ... 0.053958 0.470341 0.079718 0.411967 0.512139 0.365410 0.152088 0.019603 -0.181937 0.170721
    V19 -0.100294 -0.092673 -0.161802 -0.246008 -0.205729 0.215290 0.158371 -0.144693 0.074903 -0.148319 ... -0.205409 0.100133 -0.131542 0.144018 -0.021517 -0.079753 -0.220737 0.087605 0.012115 -0.114976
    V20 0.462493 0.459795 0.298385 0.289594 0.291309 0.136091 0.089399 0.412868 0.207612 0.271559 ... 0.016233 0.086165 0.326863 0.050699 0.009358 -0.000979 0.048981 0.161315 -0.322006 0.444965
    V21 -0.029285 -0.012911 -0.030932 0.114373 0.174025 -0.051806 -0.065300 -0.047839 0.082288 0.144371 ... 0.157097 -0.077945 0.053025 -0.159128 -0.087561 -0.053707 -0.199398 0.047340 0.315470 -0.010063
    V23 0.231136 0.222574 0.065509 0.081374 0.196530 0.069901 0.125180 0.174124 -0.066537 0.180049 ... 0.116122 0.363963 0.129783 0.367086 0.183666 0.196681 0.635252 -0.035949 -0.187582 0.226331
    V24 -0.324959 -0.233556 0.010225 -0.237326 -0.529866 0.072418 -0.030292 -0.136898 -0.029420 -0.550881 ... -0.642370 0.033532 -0.202097 0.060608 -0.134320 -0.095588 -0.243738 -0.041325 -0.137614 -0.264815
    V25 -0.200706 -0.070627 0.481785 -0.100569 -0.444375 0.438610 0.316744 0.173320 0.079805 -0.448877 ... -0.575154 0.088238 0.201243 0.065501 -0.013312 -0.030747 -0.093948 0.069302 -0.246742 -0.019373
    V26 -0.125140 -0.043012 0.035370 -0.027685 -0.080487 0.106055 0.160566 0.015724 0.072366 -0.124111 ... -0.133694 -0.057247 0.062879 -0.004545 -0.034596 0.051294 0.085576 0.064963 0.010880 -0.046724
    V27 0.733198 0.824198 0.726250 0.392006 0.412083 0.474441 0.424185 0.901100 0.246085 0.374380 ... -0.032772 0.208074 0.790239 0.095127 0.030135 -0.036123 0.159884 0.226713 -0.617771 0.812585
    V29 0.302145 0.147096 -0.275764 0.117610 0.659093 -0.467980 -0.311363 -0.011091 -0.105042 0.666775 ... 1.000000 -0.122817 -0.004364 -0.110699 0.035272 0.035392 0.078588 -0.099309 0.285581 0.123329
    V30 0.156968 0.175997 0.175943 0.043966 0.022807 0.188907 0.170113 0.150258 -0.036705 0.028866 ... -0.122817 1.000000 0.114318 0.695725 0.083693 -0.028573 -0.027987 0.006961 -0.256814 0.187311
    V31 0.675003 0.769745 0.653764 0.421954 0.447016 0.546535 0.475254 0.878072 0.560213 0.441963 ... -0.004364 0.114318 1.000000 0.016782 0.016733 -0.047273 0.152314 0.510851 -0.357785 0.750297
    V32 0.050951 0.085604 0.033942 -0.092423 -0.026186 0.144550 0.122707 0.038430 -0.093213 -0.007658 ... -0.110699 0.695725 0.016782 1.000000 0.105255 0.069300 0.016901 -0.054411 -0.162417 0.066606
    V33 0.056439 0.035129 0.050309 -0.007159 0.062367 0.054210 0.034508 0.026843 0.016739 0.046674 ... 0.035272 0.083693 0.016733 0.105255 1.000000 0.719126 0.167597 0.031586 -0.062715 0.077273
    V34 -0.019342 -0.029115 -0.025620 -0.031898 0.028659 -0.002914 -0.019103 -0.036297 -0.026994 0.010122 ... 0.035392 -0.028573 -0.047273 0.069300 0.719126 1.000000 0.233616 -0.019032 -0.006854 -0.006034
    V35 0.138933 0.146329 0.043648 0.080034 0.100010 0.044992 0.111166 0.179167 0.026846 0.081963 ... 0.078588 -0.027987 0.152314 0.016901 0.167597 0.233616 1.000000 0.025401 -0.077991 0.140294
    V36 0.231417 0.235299 0.316462 0.324475 0.113609 0.433804 0.340479 0.326586 0.922190 0.112150 ... -0.099309 0.006961 0.510851 -0.054411 0.031586 -0.019032 0.025401 1.000000 -0.039478 0.319309
    V37 -0.494076 -0.494043 -0.734956 -0.229613 -0.031054 -0.404817 -0.292285 -0.553121 -0.045851 -0.054827 ... 0.285581 -0.256814 -0.357785 -0.162417 -0.062715 -0.006854 -0.077991 -0.039478 1.000000 -0.565795
    target 0.873212 0.871846 0.638878 0.512074 0.603984 0.370037 0.287815 0.831904 0.394767 0.594189 ... 0.123329 0.187311 0.750297 0.066606 0.077273 -0.006034 0.140294 0.319309 -0.565795 1.000000

    33 rows × 33 columns

    # 画出相关性热力图
    ax = plt.subplots(figsize=(20, 16))#调整画布大小
    
    ax = sns.heatmap(train_corr, vmax=.8, square=True, annot=True)#画热力图   annot=True 显示系数
    

    # 找出相关程度
    data_train1 = train_data.drop(['V5','V9','V11','V17','V22','V28'],axis=1)
    
    plt.figure(figsize=(20, 16))  # 指定绘图对象宽度和高度
    colnm = data_train1.columns.tolist()  # 列表头
    mcorr = data_train1[colnm].corr(method="spearman")  # 相关系数矩阵,即给出了任意两个变量之间的相关系数
    mask = np.zeros_like(mcorr, dtype=np.bool)  # 构造与mcorr同维数矩阵 为bool型
    mask[np.triu_indices_from(mask)] = True  # 角分线右侧为True
    cmap = sns.diverging_palette(220, 10, as_cmap=True)  # 返回matplotlib colormap对象
    g = sns.heatmap(mcorr, mask=mask, cmap=cmap, square=True, annot=True, fmt='0.2f')  # 热力图(看两两相似度)
    plt.show()
    

    上图为所有特征变量和target变量两两之间的相关系数,由此可以看出各个特征变量V0-V37之间的相关性以及特征变量V0-V37与target的相关性。

    1.2.3 查找重要变量

    查找出特征变量和target变量相关系数大于0.5的特征变量

    #寻找K个最相关的特征信息
    k = 10 # number of variables for heatmap
    cols = train_corr.nlargest(k, 'target')['target'].index
    
    cm = np.corrcoef(train_data[cols].values.T)
    hm = plt.subplots(figsize=(10, 10))#调整画布大小
    #hm = sns.heatmap(cm, cbar=True, annot=True, square=True)
    #g = sns.heatmap(train_data[cols].corr(),annot=True,square=True,cmap="RdYlGn")
    hm = sns.heatmap(train_data[cols].corr(),annot=True,square=True)
    
    plt.show()
    
    threshold = 0.5
    
    corrmat = train_data.corr()
    top_corr_features = corrmat.index[abs(corrmat["target"])>threshold]
    plt.figure(figsize=(10,10))
    g = sns.heatmap(train_data[top_corr_features].corr(),annot=True,cmap="RdYlGn")
    
    
    drop_columns.clear()
    drop_columns = ['V5','V9','V11','V17','V22','V28']
    
    # Threshold for removing correlated variables
    threshold = 0.5
    
    # Absolute value correlation matrix
    corr_matrix = data_train1.corr().abs()
    drop_col=corr_matrix[corr_matrix["target"]#data_all.drop(drop_col, axis=1, inplace=True)
    

    由于'V14', 'V21', 'V25', 'V26', 'V32', 'V33', 'V34'特征的相关系数值小于0.5,故认为这些特征与最终的预测target值不相关,删除这些特征变量;

    #merge train_set and test_set
    train_x =  train_data.drop(['target'], axis=1)
    
    #data_all=pd.concat([train_data,test_data],axis=0,ignore_index=True)
    data_all = pd.concat([train_x,test_data]) 
    
    
    data_all.drop(drop_columns,axis=1,inplace=True)
    #View data
    data_all.head()
    
    V0 V1 V2 V3 V4 V6 V7 V8 V10 V12 ... V27 V29 V30 V31 V32 V33 V34 V35 V36 V37
    0 0.566 0.016 -0.143 0.407 0.452 -1.812 -2.360 -0.436 -0.940 -0.073 ... 0.168 0.136 0.109 -0.615 0.327 -4.627 -4.789 -5.101 -2.608 -3.508
    1 0.968 0.437 0.066 0.566 0.194 -1.566 -2.360 0.332 0.188 -0.134 ... 0.338 -0.128 0.124 0.032 0.600 -0.843 0.160 0.364 -0.335 -0.730
    2 1.013 0.568 0.235 0.370 0.112 -1.367 -2.360 0.396 0.874 -0.072 ... 0.326 -0.009 0.361 0.277 -0.116 -0.843 0.160 0.364 0.765 -0.589
    3 0.733 0.368 0.283 0.165 0.599 -1.200 -2.086 0.403 0.011 -0.014 ... 0.277 0.015 0.417 0.279 0.603 -0.843 -0.065 0.364 0.333 -0.112
    4 0.684 0.638 0.260 0.209 0.337 -1.073 -2.086 0.314 -0.251 0.199 ... 0.332 0.183 1.078 0.328 0.418 -0.843 -0.215 0.364 -0.280 -0.028

    5 rows × 32 columns

    # normalise numeric columns
    cols_numeric=list(data_all.columns)
    
    def scale_minmax(col):
        return (col-col.min())/(col.max()-col.min())
    
    data_all[cols_numeric] = data_all[cols_numeric].apply(scale_minmax,axis=0)
    data_all[cols_numeric].describe()
    
    V0 V1 V2 V3 V4 V6 V7 V8 V10 V12 ... V27 V29 V30 V31 V32 V33 V34 V35 V36 V37
    count 4813.000000 4813.000000 4813.000000 4813.000000 4813.000000 4813.000000 4813.000000 4813.000000 4813.000000 4813.000000 ... 4813.000000 4813.000000 4813.000000 4813.000000 4813.000000 4813.000000 4813.000000 4813.000000 4813.000000 4813.000000
    mean 0.694172 0.721357 0.602300 0.603139 0.523743 0.748823 0.745740 0.715607 0.348518 0.578507 ... 0.881401 0.388683 0.589459 0.792709 0.628824 0.458493 0.483790 0.762873 0.332385 0.545795
    std 0.144198 0.131443 0.140628 0.152462 0.106430 0.132560 0.132577 0.118105 0.134882 0.105088 ... 0.128221 0.133475 0.130786 0.102976 0.155003 0.099095 0.101020 0.102037 0.127456 0.150356
    min 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ... 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
    25% 0.626676 0.679416 0.514414 0.503888 0.478182 0.683324 0.696938 0.664934 0.284327 0.532892 ... 0.888575 0.292445 0.550092 0.761816 0.562461 0.409037 0.454490 0.727273 0.270584 0.445647
    50% 0.729488 0.752497 0.617072 0.614270 0.535866 0.774125 0.771974 0.742884 0.366469 0.591635 ... 0.916015 0.375734 0.594428 0.815055 0.643056 0.454518 0.499949 0.800020 0.347056 0.539317
    75% 0.790195 0.799553 0.700464 0.710474 0.585036 0.842259 0.836405 0.790835 0.432965 0.641971 ... 0.932555 0.471837 0.650798 0.852229 0.719777 0.500000 0.511365 0.800020 0.414861 0.643061
    max 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 ... 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000

    8 rows × 32 columns

    #col_data_process = cols_numeric.append('target')
    train_data_process = train_data[cols_numeric]
    train_data_process = train_data_process[cols_numeric].apply(scale_minmax,axis=0)
    
    test_data_process = test_data[cols_numeric]
    test_data_process = test_data_process[cols_numeric].apply(scale_minmax,axis=0)
    
    
    cols_numeric_left = cols_numeric[0:13]
    cols_numeric_right = cols_numeric[13:]
    
    ## Check effect of Box-Cox transforms on distributions of continuous variables
    
    train_data_process = pd.concat([train_data_process, train_data['target']], axis=1)
    
    fcols = 6
    frows = len(cols_numeric_left)
    plt.figure(figsize=(4*fcols,4*frows))
    i=0
    
    for var in cols_numeric_left:
        dat = train_data_process[[var, 'target']].dropna()
            
        i+=1
        plt.subplot(frows,fcols,i)
        sns.distplot(dat[var] , fit=stats.norm);
        plt.title(var+' Original')
        plt.xlabel('')
            
        i+=1
        plt.subplot(frows,fcols,i)
        _=stats.probplot(dat[var], plot=plt)
        plt.title('skew='+'{:.4f}'.format(stats.skew(dat[var])))
        plt.xlabel('')
        plt.ylabel('')
            
        i+=1
        plt.subplot(frows,fcols,i)
        plt.plot(dat[var], dat['target'],'.',alpha=0.5)
        plt.title('corr='+'{:.2f}'.format(np.corrcoef(dat[var], dat['target'])[0][1]))
     
        i+=1
        plt.subplot(frows,fcols,i)
        trans_var, lambda_var = stats.boxcox(dat[var].dropna()+1)
        trans_var = scale_minmax(trans_var)      
        sns.distplot(trans_var , fit=stats.norm);
        plt.title(var+' Tramsformed')
        plt.xlabel('')
            
        i+=1
        plt.subplot(frows,fcols,i)
        _=stats.probplot(trans_var, plot=plt)
        plt.title('skew='+'{:.4f}'.format(stats.skew(trans_var)))
        plt.xlabel('')
        plt.ylabel('')
            
        i+=1
        plt.subplot(frows,fcols,i)
        plt.plot(trans_var, dat['target'],'.',alpha=0.5)
        plt.title('corr='+'{:.2f}'.format(np.corrcoef(trans_var,dat['target'])[0][1]))
    
    # ## Check effect of Box-Cox transforms on distributions of continuous variables
    
     #已注释图片生成,自行打开
    
    
    # fcols = 6
    # frows = len(cols_numeric_right)
    # plt.figure(figsize=(4*fcols,4*frows))
    # i=0
    
    # for var in cols_numeric_right:
    #     dat = train_data_process[[var, 'target']].dropna()
            
    #     i+=1
    #     plt.subplot(frows,fcols,i)
    #     sns.distplot(dat[var] , fit=stats.norm);
    #     plt.title(var+' Original')
    #     plt.xlabel('')
            
    #     i+=1
    #     plt.subplot(frows,fcols,i)
    #     _=stats.probplot(dat[var], plot=plt)
    #     plt.title('skew='+'{:.4f}'.format(stats.skew(dat[var])))
    #     plt.xlabel('')
    #     plt.ylabel('')
            
    #     i+=1
    #     plt.subplot(frows,fcols,i)
    #     plt.plot(dat[var], dat['target'],'.',alpha=0.5)
    #     plt.title('corr='+'{:.2f}'.format(np.corrcoef(dat[var], dat['target'])[0][1]))
     
    #     i+=1
    #     plt.subplot(frows,fcols,i)
    #     trans_var, lambda_var = stats.boxcox(dat[var].dropna()+1)
    #     trans_var = scale_minmax(trans_var)      
    #     sns.distplot(trans_var , fit=stats.norm);
    #     plt.title(var+' Tramsformed')
    #     plt.xlabel('')
            
    #     i+=1
    #     plt.subplot(frows,fcols,i)
    #     _=stats.probplot(trans_var, plot=plt)
    #     plt.title('skew='+'{:.4f}'.format(stats.skew(trans_var)))
    #     plt.xlabel('')
    #     plt.ylabel('')
            
    #     i+=1
    #     plt.subplot(frows,fcols,i)
    #     plt.plot(trans_var, dat['target'],'.',alpha=0.5)
    #     plt.title('corr='+'{:.2f}'.format(np.corrcoef(trans_var,dat['target'])[0][1]))
    

    2.数据特征工程

    2.1数据预处理和特征处理

    # 导入数据分析工具包
    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns
    
    from scipy import stats
    
    import warnings
    warnings.filterwarnings("ignore")
     
    %matplotlib inline
    
    # 读取数据
    train_data_file = "./zhengqi_train.txt"
    test_data_file =  "./zhengqi_test.txt"
    
    train_data = pd.read_csv(train_data_file, sep='\t', encoding='utf-8')
    test_data = pd.read_csv(test_data_file, sep='\t', encoding='utf-8')
    
    train_data.describe()
    #数据总览
    
    V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 ... V29 V30 V31 V32 V33 V34 V35 V36 V37 target
    count 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 ... 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000 2888.000000
    mean 0.123048 0.056068 0.289720 -0.067790 0.012921 -0.558565 0.182892 0.116155 0.177856 -0.169452 ... 0.097648 0.055477 0.127791 0.020806 0.007801 0.006715 0.197764 0.030658 -0.130330 0.126353
    std 0.928031 0.941515 0.911236 0.970298 0.888377 0.517957 0.918054 0.955116 0.895444 0.953813 ... 1.061200 0.901934 0.873028 0.902584 1.006995 1.003291 0.985675 0.970812 1.017196 0.983966
    min -4.335000 -5.122000 -3.420000 -3.956000 -4.742000 -2.182000 -4.576000 -5.048000 -4.692000 -12.891000 ... -2.912000 -4.507000 -5.859000 -4.053000 -4.627000 -4.789000 -5.695000 -2.608000 -3.630000 -3.044000
    25% -0.297000 -0.226250 -0.313000 -0.652250 -0.385000 -0.853000 -0.310000 -0.295000 -0.159000 -0.390000 ... -0.664000 -0.283000 -0.170250 -0.407250 -0.499000 -0.290000 -0.202500 -0.413000 -0.798250 -0.350250
    50% 0.359000 0.272500 0.386000 -0.044500 0.110000 -0.466000 0.388000 0.344000 0.362000 0.042000 ... -0.023000 0.053500 0.299500 0.039000 -0.040000 0.160000 0.364000 0.137000 -0.185500 0.313000
    75% 0.726000 0.599000 0.918250 0.624000 0.550250 -0.154000 0.831250 0.782250 0.726000 0.042000 ... 0.745250 0.488000 0.635000 0.557000 0.462000 0.273000 0.602000 0.644250 0.495250 0.793250
    max 2.121000 1.918000 2.828000 2.457000 2.689000 0.489000 1.895000 1.918000 2.245000 1.335000 ... 4.580000 2.689000 2.013000 2.395000 5.465000 5.110000 2.324000 5.238000 3.000000 2.538000

    8 rows × 39 columns

    2.1.1 异常值分析

    #异常值分析
    plt.figure(figsize=(18, 10))
    plt.boxplot(x=train_data.values,labels=train_data.columns)
    plt.hlines([-7.5, 7.5], 0, 40, colors='r')
    plt.show()
    

    ## 删除异常值
    train_data = train_data[train_data['V9']>-7.5]
    train_data.describe()
    
    V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 ... V29 V30 V31 V32 V33 V34 V35 V36 V37 target
    count 2886.000000 2886.000000 2886.000000 2886.000000 2886.000000 2886.000000 2886.000000 2886.000000 2886.000000 2886.00000 ... 2886.000000 2886.000000 2886.000000 2886.000000 2886.000000 2886.000000 2886.000000 2886.000000 2886.000000 2886.000000
    mean 0.123725 0.056856 0.290340 -0.068364 0.012254 -0.558971 0.183273 0.116274 0.178138 -0.16213 ... 0.097019 0.058619 0.127617 0.023626 0.008271 0.006959 0.198513 0.030099 -0.131957 0.127451
    std 0.927984 0.941269 0.911231 0.970357 0.888037 0.517871 0.918211 0.955418 0.895552 0.91089 ... 1.060824 0.894311 0.873300 0.896509 1.007175 1.003411 0.985058 0.970258 1.015666 0.983144
    min -4.335000 -5.122000 -3.420000 -3.956000 -4.742000 -2.182000 -4.576000 -5.048000 -4.692000 -7.07100 ... -2.912000 -4.507000 -5.859000 -4.053000 -4.627000 -4.789000 -5.695000 -2.608000 -3.630000 -3.044000
    25% -0.292000 -0.224250 -0.310000 -0.652750 -0.385000 -0.853000 -0.310000 -0.295000 -0.158750 -0.39000 ... -0.664000 -0.282000 -0.170750 -0.405000 -0.499000 -0.290000 -0.199750 -0.412750 -0.798750 -0.347500
    50% 0.359500 0.273000 0.386000 -0.045000 0.109500 -0.466000 0.388500 0.345000 0.362000 0.04200 ... -0.023000 0.054500 0.299500 0.040000 -0.040000 0.160000 0.364000 0.137000 -0.186000 0.314000
    75% 0.726000 0.599000 0.918750 0.623500 0.550000 -0.154000 0.831750 0.782750 0.726000 0.04200 ... 0.745000 0.488000 0.635000 0.557000 0.462000 0.273000 0.602000 0.643750 0.493000 0.793750
    max 2.121000 1.918000 2.828000 2.457000 2.689000 0.489000 1.895000 1.918000 2.245000 1.33500 ... 4.580000 2.689000 2.013000 2.395000 5.465000 5.110000 2.324000 5.238000 3.000000 2.538000

    8 rows × 39 columns

    test_data.describe()
    
    V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 ... V28 V29 V30 V31 V32 V33 V34 V35 V36 V37
    count 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 ... 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000
    mean -0.184404 -0.083912 -0.434762 0.101671 -0.019172 0.838049 -0.274092 -0.173971 -0.266709 0.255114 ... -0.206871 -0.146463 -0.083215 -0.191729 -0.030782 -0.011433 -0.009985 -0.296895 -0.046270 0.195735
    std 1.073333 1.076670 0.969541 1.034925 1.147286 0.963043 1.054119 1.040101 1.085916 1.014394 ... 1.064140 0.880593 1.126414 1.138454 1.130228 0.989732 0.995213 0.946896 1.040854 0.940599
    min -4.814000 -5.488000 -4.283000 -3.276000 -4.921000 -1.168000 -5.649000 -5.625000 -6.059000 -6.784000 ... -2.435000 -2.413000 -4.507000 -7.698000 -4.057000 -4.627000 -4.789000 -7.477000 -2.608000 -3.346000
    25% -0.664000 -0.451000 -0.978000 -0.644000 -0.497000 0.122000 -0.732000 -0.509000 -0.775000 -0.390000 ... -0.453000 -0.818000 -0.339000 -0.476000 -0.472000 -0.460000 -0.290000 -0.349000 -0.593000 -0.432000
    50% 0.065000 0.195000 -0.267000 0.220000 0.118000 0.437000 -0.082000 0.018000 -0.004000 0.401000 ... -0.445000 -0.199000 0.010000 0.100000 0.155000 -0.040000 0.160000 -0.270000 0.083000 0.152000
    75% 0.549000 0.589000 0.278000 0.793000 0.610000 1.928000 0.457000 0.515000 0.482000 0.904000 ... -0.434000 0.468000 0.447000 0.471000 0.627000 0.419000 0.273000 0.364000 0.651000 0.797000
    max 2.100000 2.120000 1.946000 2.603000 4.475000 3.176000 1.528000 1.394000 2.408000 1.766000 ... 4.656000 3.022000 3.139000 1.428000 2.299000 5.465000 5.110000 1.671000 2.861000 3.021000

    8 rows × 38 columns

    2.1.2 归一化处理

    
    from sklearn import preprocessing 
    
    features_columns = [col for col in train_data.columns if col not in ['target']]
    
    min_max_scaler = preprocessing.MinMaxScaler()
    
    min_max_scaler = min_max_scaler.fit(train_data[features_columns])
    
    train_data_scaler = min_max_scaler.transform(train_data[features_columns])
    test_data_scaler = min_max_scaler.transform(test_data[features_columns])
    
    train_data_scaler = pd.DataFrame(train_data_scaler)
    train_data_scaler.columns = features_columns
    
    test_data_scaler = pd.DataFrame(test_data_scaler)
    test_data_scaler.columns = features_columns
    
    train_data_scaler['target'] = train_data['target']
    
    train_data_scaler.describe()
    
    test_data_scaler.describe()
    
    V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 ... V28 V29 V30 V31 V32 V33 V34 V35 V36 V37
    count 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 ... 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000 1925.000000
    mean 0.642905 0.715637 0.477791 0.632726 0.635558 1.130681 0.664798 0.699688 0.637926 0.871534 ... 0.313556 0.369132 0.614756 0.719928 0.623793 0.457349 0.482778 0.673164 0.326501 0.577034
    std 0.166253 0.152936 0.155176 0.161379 0.154392 0.360555 0.162899 0.149311 0.156540 0.120675 ... 0.149752 0.117538 0.156533 0.144621 0.175284 0.098071 0.100537 0.118082 0.132661 0.141870
    min -0.074195 -0.051989 -0.138124 0.106035 -0.024088 0.379633 -0.165817 -0.082831 -0.197059 0.034142 ... 0.000000 0.066604 0.000000 -0.233613 -0.000620 0.000000 0.000000 -0.222222 0.000000 0.042836
    25% 0.568618 0.663494 0.390845 0.516451 0.571256 0.862598 0.594035 0.651593 0.564653 0.794789 ... 0.278919 0.279498 0.579211 0.683816 0.555366 0.412901 0.454490 0.666667 0.256819 0.482353
    50% 0.681537 0.755256 0.504641 0.651177 0.654017 0.980532 0.694483 0.727247 0.675796 0.888889 ... 0.280045 0.362120 0.627710 0.756987 0.652605 0.454518 0.499949 0.676518 0.342977 0.570437
    75% 0.756506 0.811222 0.591869 0.740527 0.720226 1.538750 0.777778 0.798593 0.745856 0.948727 ... 0.281593 0.451148 0.688438 0.804116 0.725806 0.500000 0.511365 0.755580 0.415371 0.667722
    max 0.996747 1.028693 0.858835 1.022766 1.240345 2.005990 0.943285 0.924777 1.023497 1.051273 ... 0.997889 0.792045 1.062535 0.925686 0.985112 1.000000 1.000000 0.918568 0.697043 1.003167

    8 rows × 38 columns

    #查看数据集情况
    dist_cols = 6
    dist_rows = len(test_data_scaler.columns)
    
    plt.figure(figsize=(4*dist_cols,4*dist_rows))
    
    
    for i, col in enumerate(test_data_scaler.columns):
        ax=plt.subplot(dist_rows,dist_cols,i+1)
        ax = sns.kdeplot(train_data_scaler[col], color="Red", shade=True)
        ax = sns.kdeplot(test_data_scaler[col], color="Blue", shade=True)
        ax.set_xlabel(col)
        ax.set_ylabel("Frequency")
        ax = ax.legend(["train","test"])
     
    # plt.show()
     #已注释图片生成,自行打开
    

    查看特征'V5', 'V17', 'V28', 'V22', 'V11', 'V9'数据的数据分布

    drop_col = 6
    drop_row = 1
    
    plt.figure(figsize=(5*drop_col,5*drop_row))
    
    for i, col in enumerate(["V5","V9","V11","V17","V22","V28"]):
        ax =plt.subplot(drop_row,drop_col,i+1)
        ax = sns.kdeplot(train_data_scaler[col], color="Red", shade=True)
        ax= sns.kdeplot(test_data_scaler[col], color="Blue", shade=True)
        ax.set_xlabel(col)
        ax.set_ylabel("Frequency")
        ax = ax.legend(["train","test"])
    plt.show()
    

    这几个特征下,训练集的数据和测试集的数据分布不一致,会影响模型的泛化能力,故删除这些特征

    3.1.3 特征相关性

    plt.figure(figsize=(20, 16))  
    column = train_data_scaler.columns.tolist()  
    mcorr = train_data_scaler[column].corr(method="spearman")  
    mask = np.zeros_like(mcorr, dtype=np.bool)  
    mask[np.triu_indices_from(mask)] = True  
    cmap = sns.diverging_palette(220, 10, as_cmap=True)  
    g = sns.heatmap(mcorr, mask=mask, cmap=cmap, square=True, annot=True, fmt='0.2f')  
    plt.show()
    

    2.2 特征降维

    mcorr=mcorr.abs()
    numerical_corr=mcorr[mcorr['target']>0.1]['target']
    print(numerical_corr.sort_values(ascending=False))
    
    index0 = numerical_corr.sort_values(ascending=False).index
    print(train_data_scaler[index0].corr('spearman'))
    
    target    1.000000
    V0        0.712403
    V31       0.711636
    V1        0.682909
    V8        0.679469
    V27       0.657398
    V2        0.585850
    V16       0.545793
    V3        0.501622
    V4        0.478683
    V12       0.460300
    V10       0.448682
    V36       0.425991
    V37       0.376443
    V24       0.305526
    V5        0.286076
    V6        0.280195
    V20       0.278381
    V11       0.234551
    V15       0.221290
    V29       0.190109
    V7        0.185321
    V19       0.180111
    V18       0.149741
    V13       0.149199
    V17       0.126262
    V22       0.112743
    V30       0.101378
    Name: target, dtype: float64
              target        V0       V31        V1        V8       V27        V2  \
    target  1.000000  0.712403  0.711636  0.682909  0.679469  0.657398  0.585850   
    V0      0.712403  1.000000  0.739116  0.894116  0.832151  0.763128  0.516817   
    V31     0.711636  0.739116  1.000000  0.807585  0.841469  0.765750  0.589890   
    V1      0.682909  0.894116  0.807585  1.000000  0.849034  0.807102  0.490239   
    V8      0.679469  0.832151  0.841469  0.849034  1.000000  0.887119  0.676417   
    V27     0.657398  0.763128  0.765750  0.807102  0.887119  1.000000  0.709534   
    V2      0.585850  0.516817  0.589890  0.490239  0.676417  0.709534  1.000000   
    V16     0.545793  0.388852  0.642309  0.396122  0.642156  0.620981  0.783643   
    V3      0.501622  0.401150  0.420134  0.363749  0.400915  0.402468  0.417190   
    V4      0.478683  0.697430  0.521226  0.651615  0.455801  0.424260  0.062134   
    V12     0.460300  0.640696  0.471528  0.596173  0.368572  0.336190  0.055734   
    V10     0.448682  0.279350  0.445335  0.255763  0.351127  0.203066  0.292769   
    V36     0.425991  0.214930  0.390250  0.192985  0.263291  0.186131  0.259475   
    V37    -0.376443 -0.472200 -0.301906 -0.397080 -0.507057 -0.557098 -0.731786   
    V24    -0.305526 -0.336325 -0.267968 -0.289742 -0.148323 -0.153834  0.018458   
    V5     -0.286076 -0.356704 -0.162304 -0.242776 -0.188993 -0.222596 -0.324464   
    V6      0.280195  0.131507  0.340145  0.147037  0.355064  0.356526  0.546921   
    V20     0.278381  0.444939  0.349530  0.421987  0.408853  0.361040  0.293635   
    V11    -0.234551 -0.333101 -0.131425 -0.221910 -0.161792 -0.190952 -0.271868   
    V15     0.221290  0.334135  0.110674  0.230395  0.054701  0.007156 -0.206499   
    V29     0.190109  0.334603  0.121833  0.240964  0.050211  0.006048 -0.255559   
    V7      0.185321  0.075732  0.277283  0.082766  0.278231  0.290620  0.378984   
    V19    -0.180111 -0.144295 -0.183185 -0.146559 -0.170237 -0.228613 -0.179416   
    V18     0.149741  0.132143  0.094678  0.093688  0.079592  0.091660  0.114929   
    V13     0.149199  0.173861  0.071517  0.134595  0.105380  0.126831  0.180477   
    V17     0.126262  0.055024  0.115056  0.081446  0.102544  0.036520 -0.050935   
    V22    -0.112743 -0.076698 -0.106450 -0.072848 -0.078333 -0.111196 -0.241206   
    V30     0.101378  0.099242  0.131453  0.109216  0.165204  0.167073  0.176236   
    
                 V16        V3        V4  ...       V11       V15       V29  \
    target  0.545793  0.501622  0.478683  ... -0.234551  0.221290  0.190109   
    V0      0.388852  0.401150  0.697430  ... -0.333101  0.334135  0.334603   
    V31     0.642309  0.420134  0.521226  ... -0.131425  0.110674  0.121833   
    V1      0.396122  0.363749  0.651615  ... -0.221910  0.230395  0.240964   
    V8      0.642156  0.400915  0.455801  ... -0.161792  0.054701  0.050211   
    V27     0.620981  0.402468  0.424260  ... -0.190952  0.007156  0.006048   
    V2      0.783643  0.417190  0.062134  ... -0.271868 -0.206499 -0.255559   
    V16     1.000000  0.388886  0.009749  ... -0.088716 -0.280952 -0.327558   
    V3      0.388886  1.000000  0.294049  ... -0.126924  0.145291  0.128079   
    V4      0.009749  0.294049  1.000000  ... -0.164113  0.641180  0.692626   
    V12    -0.024541  0.286500  0.897807  ... -0.232228  0.703861  0.732617   
    V10     0.473009  0.295181  0.123829  ...  0.049969 -0.014449 -0.060440   
    V36     0.469130  0.299063  0.099359  ... -0.017805 -0.012844 -0.051097   
    V37    -0.431507 -0.219751  0.040396  ...  0.455998  0.234751  0.273926   
    V24     0.064523 -0.237022 -0.558334  ...  0.170969 -0.687353 -0.677833   
    V5     -0.045495 -0.230466 -0.248061  ...  0.797583 -0.250027 -0.233233   
    V6      0.760362  0.181135 -0.204780  ... -0.170545 -0.443436 -0.486682   
    V20     0.239572  0.270647  0.257815  ... -0.138684  0.050867  0.035022   
    V11    -0.088716 -0.126924 -0.164113  ...  1.000000 -0.123004 -0.120982   
    V15    -0.280952  0.145291  0.641180  ... -0.123004  1.000000  0.947360   
    V29    -0.327558  0.128079  0.692626  ... -0.120982  0.947360  1.000000   
    V7      0.651907  0.132564 -0.150577  ... -0.097623 -0.335054 -0.360490   
    V19    -0.019645 -0.265940 -0.237529  ... -0.094150 -0.215364 -0.212691   
    V18     0.066147  0.014697  0.135792  ... -0.153625  0.109030  0.098474   
    V13     0.074214 -0.019453  0.061801  ... -0.436341  0.047845  0.024514   
    V17     0.172978  0.067720  0.060753  ...  0.192222 -0.004555 -0.006498   
    V22    -0.091204 -0.305218  0.021174  ...  0.079577  0.069993  0.072070   
    V30     0.217428  0.055660 -0.053976  ... -0.102750 -0.147541 -0.161966   
    
                  V7       V19       V18       V13       V17       V22       V30  
    target  0.185321 -0.180111  0.149741  0.149199  0.126262 -0.112743  0.101378  
    V0      0.075732 -0.144295  0.132143  0.173861  0.055024 -0.076698  0.099242  
    V31     0.277283 -0.183185  0.094678  0.071517  0.115056 -0.106450  0.131453  
    V1      0.082766 -0.146559  0.093688  0.134595  0.081446 -0.072848  0.109216  
    V8      0.278231 -0.170237  0.079592  0.105380  0.102544 -0.078333  0.165204  
    V27     0.290620 -0.228613  0.091660  0.126831  0.036520 -0.111196  0.167073  
    V2      0.378984 -0.179416  0.114929  0.180477 -0.050935 -0.241206  0.176236  
    V16     0.651907 -0.019645  0.066147  0.074214  0.172978 -0.091204  0.217428  
    V3      0.132564 -0.265940  0.014697 -0.019453  0.067720 -0.305218  0.055660  
    V4     -0.150577 -0.237529  0.135792  0.061801  0.060753  0.021174 -0.053976  
    V12    -0.157087 -0.174034  0.125965  0.102293  0.012429 -0.004863 -0.054432  
    V10     0.242818  0.089046  0.038237 -0.100776  0.258885 -0.132951  0.027257  
    V36     0.268044  0.099034  0.066478 -0.068582  0.298962 -0.136943  0.056802  
    V37    -0.284305  0.025241 -0.097699 -0.344661  0.052673  0.110455 -0.176127  
    V24     0.076407  0.287262 -0.221117 -0.073906  0.094367  0.081279  0.079363  
    V5      0.118541  0.247903 -0.191786 -0.408978  0.342555  0.143785  0.020252  
    V6      0.904614  0.292661  0.061109  0.088866  0.094702 -0.102842  0.201834  
    V20     0.064205  0.029483  0.050529  0.004600  0.061369 -0.092706  0.035036  
    V11    -0.097623 -0.094150 -0.153625 -0.436341  0.192222  0.079577 -0.102750  
    V15    -0.335054 -0.215364  0.109030  0.047845 -0.004555  0.069993 -0.147541  
    V29    -0.360490 -0.212691  0.098474  0.024514 -0.006498  0.072070 -0.161966  
    V7      1.000000  0.269472  0.032519  0.059724  0.178034  0.058178  0.196347  
    V19     0.269472  1.000000 -0.034215 -0.106162  0.250114  0.075582  0.120766  
    V18     0.032519 -0.034215  1.000000  0.242008 -0.073678  0.016819  0.133708  
    V13     0.059724 -0.106162  0.242008  1.000000 -0.108020  0.348432 -0.097178  
    V17     0.178034  0.250114 -0.073678 -0.108020  1.000000  0.363785  0.057480  
    V22     0.058178  0.075582  0.016819  0.348432  0.363785  1.000000 -0.054570  
    V30     0.196347  0.120766  0.133708 -0.097178  0.057480 -0.054570  1.000000  
    
    [28 rows x 28 columns]
    

    2.2.1 相关性初筛

    features_corr = numerical_corr.sort_values(ascending=False).reset_index()
    features_corr.columns = ['features_and_target', 'corr']
    features_corr_select = features_corr[features_corr['corr']>0.3] # 筛选出大于相关性大于0.3的特征
    print(features_corr_select)
    select_features = [col for col in features_corr_select['features_and_target'] if col not in ['target']]
    new_train_data_corr_select = train_data_scaler[select_features+['target']]
    new_test_data_corr_select = test_data_scaler[select_features]
    
       features_and_target      corr
    0               target  1.000000
    1                   V0  0.712403
    2                  V31  0.711636
    3                   V1  0.682909
    4                   V8  0.679469
    5                  V27  0.657398
    6                   V2  0.585850
    7                  V16  0.545793
    8                   V3  0.501622
    9                   V4  0.478683
    10                 V12  0.460300
    11                 V10  0.448682
    12                 V36  0.425991
    13                 V37  0.376443
    14                 V24  0.305526
    

    2.2.2 多重共线性分析

    !pip install statsmodels -i https://pypi.tuna.tsinghua.edu.cn/simple
    
    Looking in indexes: https://pypi.tuna.tsinghua.edu.cn/simple
    Requirement already satisfied: statsmodels in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (0.13.5)
    Requirement already satisfied: scipy>=1.3 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from statsmodels) (1.6.3)
    Requirement already satisfied: pandas>=0.25 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from statsmodels) (1.1.5)
    Requirement already satisfied: packaging>=21.3 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from statsmodels) (21.3)
    Requirement already satisfied: numpy>=1.17 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from statsmodels) (1.19.5)
    Requirement already satisfied: patsy>=0.5.2 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from statsmodels) (0.5.3)
    Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from packaging>=21.3->statsmodels) (3.0.9)
    Requirement already satisfied: pytz>=2017.2 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from pandas>=0.25->statsmodels) (2019.3)
    Requirement already satisfied: python-dateutil>=2.7.3 in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from pandas>=0.25->statsmodels) (2.8.2)
    Requirement already satisfied: six in /opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages (from patsy>=0.5.2->statsmodels) (1.16.0)
    
    [notice] A new release of pip available: 22.1.2 -> 23.0.1
    [notice] To update, run: pip install --upgrade pip
    
    from statsmodels.stats.outliers_influence import variance_inflation_factor #多重共线性方差膨胀因子
    
    #多重共线性
    new_numerical=['V0', 'V2', 'V3', 'V4', 'V5', 'V6', 'V10','V11', 
                             'V13', 'V15', 'V16', 'V18', 'V19', 'V20', 'V22','V24','V30', 'V31', 'V37']
    X=np.matrix(train_data_scaler[new_numerical])
    VIF_list=[variance_inflation_factor(X, i) for i in range(X.shape[1])]
    VIF_list
    
    [216.73387180903222,
     114.38118723828812,
     27.863778129686356,
     201.96436579080174,
     78.93722825798903,
     151.06983667656212,
     14.519604941508451,
     82.69750284665385,
     28.479378440614585,
     27.759176471505945,
     526.6483470743831,
     23.50166642638334,
     19.920315849901424,
     24.640481765008683,
     11.816055964845381,
     4.958208708452915,
     37.09877416736591,
     298.26442986612767,
     47.854002539887034]
    

    2.2.3 PCA处理降维

    from sklearn.decomposition import PCA   #主成分分析法
    
    #PCA方法降维
    #保持90%的信息
    pca = PCA(n_components=0.9)
    new_train_pca_90 = pca.fit_transform(train_data_scaler.iloc[:,0:-1])
    new_test_pca_90 = pca.transform(test_data_scaler)
    new_train_pca_90 = pd.DataFrame(new_train_pca_90)
    new_test_pca_90 = pd.DataFrame(new_test_pca_90)
    new_train_pca_90['target'] = train_data_scaler['target']
    new_train_pca_90.describe()
    
    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 target
    count 2.886000e+03 2886.000000 2.886000e+03 2.886000e+03 2.886000e+03 2.886000e+03 2.886000e+03 2.886000e+03 2.886000e+03 2.886000e+03 2.886000e+03 2.886000e+03 2886.000000 2.886000e+03 2.886000e+03 2.886000e+03 2884.000000
    mean 2.954440e-17 0.000000 3.200643e-17 4.924066e-18 7.139896e-17 -2.585135e-17 7.878506e-17 -5.170269e-17 -9.848132e-17 1.218706e-16 -7.016794e-17 1.181776e-16 0.000000 -3.446846e-17 -3.446846e-17 8.863319e-17 0.127274
    std 3.998976e-01 0.350024 2.938631e-01 2.728023e-01 2.077128e-01 1.951842e-01 1.877104e-01 1.607670e-01 1.512707e-01 1.443772e-01 1.368790e-01 1.286192e-01 0.119330 1.149758e-01 1.133507e-01 1.019259e-01 0.983462
    min -1.071795e+00 -0.942948 -9.948314e-01 -7.103087e-01 -7.703987e-01 -5.340294e-01 -5.993766e-01 -5.870755e-01 -6.282818e-01 -4.902583e-01 -6.341045e-01 -5.906753e-01 -0.417515 -4.310613e-01 -4.170535e-01 -3.601627e-01 -3.044000
    25% -2.804085e-01 -0.261373 -2.090797e-01 -1.945196e-01 -1.315620e-01 -1.264097e-01 -1.236360e-01 -1.016452e-01 -9.662098e-02 -9.297088e-02 -8.202809e-02 -7.721868e-02 -0.071400 -7.474073e-02 -7.709743e-02 -6.603914e-02 -0.348500
    50% -1.417104e-02 -0.012772 2.112166e-02 -2.337401e-02 -5.122797e-03 -1.355336e-02 -1.747870e-04 -4.656359e-03 2.572054e-03 -1.479172e-03 7.286444e-03 -5.745946e-03 -0.004141 1.054915e-03 -1.758387e-03 -7.533392e-04 0.313000
    75% 2.287306e-01 0.231772 2.069571e-01 1.657590e-01 1.281660e-01 9.993122e-02 1.272081e-01 9.657222e-02 1.002626e-01 9.059634e-02 8.833765e-02 7.148033e-02 0.067862 7.574868e-02 7.116829e-02 6.357449e-02 0.794250
    max 1.597730e+00 1.382802 1.010250e+00 1.448007e+00 1.034061e+00 1.358962e+00 6.191589e-01 7.370089e-01 6.449125e-01 5.839586e-01 6.405187e-01 6.780732e-01 0.515612 4.978126e-01 4.673189e-01 4.570870e-01 2.538000
    train_data_scaler.describe()
    
    V0 V1 V2 V3 V4 V5 V6 V7 V8 V9 ... V29 V30 V31 V32 V33 V34 V35 V36 V37 target
    count 2886.000000 2886.000000 2886.000000 2886.000000 2886.000000 2886.000000 2886.000000 2886.000000 2886.000000 2886.000000 ... 2886.000000 2886.000000 2886.000000 2886.000000 2886.000000 2886.000000 2886.000000 2886.000000 2886.000000 2884.000000
    mean 0.690633 0.735633 0.593844 0.606212 0.639787 0.607649 0.735477 0.741354 0.702053 0.821897 ... 0.401631 0.634466 0.760495 0.632231 0.459302 0.484489 0.734944 0.336235 0.527608 0.127274
    std 0.143740 0.133703 0.145844 0.151311 0.119504 0.193887 0.141896 0.137154 0.129098 0.108362 ... 0.141594 0.124279 0.110938 0.139037 0.099799 0.101365 0.122840 0.123663 0.153192 0.983462
    min 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 ... 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 -3.044000
    25% 0.626239 0.695703 0.497759 0.515087 0.586328 0.497566 0.659249 0.682314 0.653489 0.794789 ... 0.300053 0.587132 0.722593 0.565757 0.409037 0.454490 0.685279 0.279792 0.427036 -0.348500
    50% 0.727153 0.766335 0.609155 0.609855 0.652873 0.642456 0.767192 0.774189 0.728557 0.846181 ... 0.385611 0.633894 0.782330 0.634770 0.454518 0.499949 0.755580 0.349860 0.519457 0.313000
    75% 0.783922 0.812642 0.694422 0.714096 0.712152 0.759266 0.835690 0.837030 0.781029 0.846181 ... 0.488121 0.694136 0.824949 0.714950 0.504261 0.511365 0.785260 0.414447 0.621870 0.794250
    max 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 ... 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 1.000000 2.538000

    8 rows × 39 columns

    #PCA方法降维
    #保留16个主成分
    pca = PCA(n_components=0.95)
    new_train_pca_16 = pca.fit_transform(train_data_scaler.iloc[:,0:-1])
    new_test_pca_16 = pca.transform(test_data_scaler)
    new_train_pca_16 = pd.DataFrame(new_train_pca_16)
    new_test_pca_16 = pd.DataFrame(new_test_pca_16)
    new_train_pca_16['target'] = train_data_scaler['target']
    new_train_pca_16.describe()
    
    0 1 2 3 4 5 6 7 8 9 ... 12 13 14 15 16 17 18 19 20 target
    count 2.886000e+03 2886.000000 2.886000e+03 2.886000e+03 2.886000e+03 2.886000e+03 2.886000e+03 2.886000e+03 2.886000e+03 2.886000e+03 ... 2886.000000 2.886000e+03 2.886000e+03 2.886000e+03 2.886000e+03 2.886000e+03 2.886000e+03 2.886000e+03 2.886000e+03 2884.000000
    mean 2.954440e-17 0.000000 3.200643e-17 4.924066e-18 7.139896e-17 -2.585135e-17 7.878506e-17 -5.170269e-17 -9.848132e-17 1.218706e-16 ... 0.000000 -3.446846e-17 -3.446846e-17 8.863319e-17 4.493210e-17 1.107915e-17 -1.908076e-17 7.293773e-17 -1.224861e-16 0.127274
    std 3.998976e-01 0.350024 2.938631e-01 2.728023e-01 2.077128e-01 1.951842e-01 1.877104e-01 1.607670e-01 1.512707e-01 1.443772e-01 ... 0.119330 1.149758e-01 1.133507e-01 1.019259e-01 9.617307e-02 9.205940e-02 8.423171e-02 8.295263e-02 7.696785e-02 0.983462
    min -1.071795e+00 -0.942948 -9.948314e-01 -7.103087e-01 -7.703987e-01 -5.340294e-01 -5.993766e-01 -5.870755e-01 -6.282818e-01 -4.902583e-01 ... -0.417515 -4.310613e-01 -4.170535e-01 -3.601627e-01 -3.432530e-01 -3.530609e-01 -3.908328e-01 -3.089560e-01 -2.867812e-01 -3.044000
    25% -2.804085e-01 -0.261373 -2.090797e-01 -1.945196e-01 -1.315620e-01 -1.264097e-01 -1.236360e-01 -1.016452e-01 -9.662098e-02 -9.297088e-02 ... -0.071400 -7.474073e-02 -7.709743e-02 -6.603914e-02 -6.064846e-02 -6.247177e-02 -5.357475e-02 -5.279870e-02 -4.930849e-02 -0.348500
    50% -1.417104e-02 -0.012772 2.112166e-02 -2.337401e-02 -5.122797e-03 -1.355336e-02 -1.747870e-04 -4.656359e-03 2.572054e-03 -1.479172e-03 ... -0.004141 1.054915e-03 -1.758387e-03 -7.533392e-04 -4.559279e-03 -2.317781e-03 -3.034317e-04 3.391130e-03 -1.703944e-03 0.313000
    75% 2.287306e-01 0.231772 2.069571e-01 1.657590e-01 1.281660e-01 9.993122e-02 1.272081e-01 9.657222e-02 1.002626e-01 9.059634e-02 ... 0.067862 7.574868e-02 7.116829e-02 6.357449e-02 5.732624e-02 6.139602e-02 5.068802e-02 5.084688e-02 4.693391e-02 0.794250
    max 1.597730e+00 1.382802 1.010250e+00 1.448007e+00 1.034061e+00 1.358962e+00 6.191589e-01 7.370089e-01 6.449125e-01 5.839586e-01 ... 0.515612 4.978126e-01 4.673189e-01 4.570870e-01 5.153325e-01 3.556862e-01 4.709891e-01 3.677911e-01 3.663361e-01 2.538000

    8 rows × 22 columns

    3.模型训练

    3.1 回归及相关模型

    ## 导入相关库
    from sklearn.linear_model import LinearRegression  #线性回归
    from sklearn.neighbors import KNeighborsRegressor  #K近邻回归
    from sklearn.tree import DecisionTreeRegressor     #决策树回归
    from sklearn.ensemble import RandomForestRegressor #随机森林回归
    from sklearn.svm import SVR  #支持向量回归
    import lightgbm as lgb #lightGbm模型
    from sklearn.ensemble import GradientBoostingRegressor
    
    from sklearn.model_selection import train_test_split # 切分数据
    from sklearn.metrics import mean_squared_error #评价指标
    
    from sklearn.model_selection import learning_curve
    from sklearn.model_selection import ShuffleSplit
    
    ## 切分训练数据和线下验证数据
    
    #采用 pca 保留16维特征的数据
    new_train_pca_16 = new_train_pca_16.fillna(0)
    train = new_train_pca_16[new_test_pca_16.columns]
    target = new_train_pca_16['target']
    
    # 切分数据 训练数据80% 验证数据20%
    train_data,test_data,train_target,test_target=train_test_split(train,target,test_size=0.2,random_state=0)
    

    3.1.1 多元线性回归模型

    clf = LinearRegression()
    clf.fit(train_data, train_target)
    score = mean_squared_error(test_target, clf.predict(test_data))
    print("LinearRegression:   ", score)
    
    train_score = []
    test_score = []
    
    # 给予不同的数据量,查看模型的学习效果
    for i in range(10, len(train_data)+1, 10):
        lin_reg = LinearRegression()
        lin_reg.fit(train_data[:i], train_target[:i])
        # LinearRegression().fit(X_train[:i], y_train[:i])
        
        # 查看模型的预测情况:两种,模型基于训练数据集预测的情况(可以理解为模型拟合训练数据集的情况),模型基于测试数据集预测的情况
        # 此处使用 lin_reg.predict(X_train[:i]),为训练模型的全部数据集
        y_train_predict = lin_reg.predict(train_data[:i])
        train_score.append(mean_squared_error(train_target[:i], y_train_predict))
        
        y_test_predict = lin_reg.predict(test_data)
        test_score.append(mean_squared_error(test_target, y_test_predict))
        
    # np.sqrt(train_score):将列表 train_score 中的数开平方
    plt.plot([i for i in range(1, len(train_score)+1)], train_score, label='train')
    plt.plot([i for i in range(1, len(test_score)+1)], test_score, label='test')
    
    # plt.legend():显示图例(如图形的 label);
    plt.legend()
    plt.show()
    
    LinearRegression:    0.2642337917628173
    

    定义绘制模型学习曲线函数

    def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
                            n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)):
        plt.figure()
        plt.title(title)
        if ylim is not None:
            plt.ylim(*ylim)
        plt.xlabel("Training examples")
        plt.ylabel("Score")
        train_sizes, train_scores, test_scores = learning_curve(
            estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes)
        train_scores_mean = np.mean(train_scores, axis=1)
        train_scores_std = np.std(train_scores, axis=1)
        test_scores_mean = np.mean(test_scores, axis=1)
        test_scores_std = np.std(test_scores, axis=1)
        
        print(train_scores_mean)
        print(test_scores_mean)
        
        plt.grid()
     
        plt.fill_between(train_sizes, train_scores_mean - train_scores_std,
                         train_scores_mean + train_scores_std, alpha=0.1,
                         color="r")
        plt.fill_between(train_sizes, test_scores_mean - test_scores_std,
                         test_scores_mean + test_scores_std, alpha=0.1, color="g")
        plt.plot(train_sizes, train_scores_mean, 'o-', color="r",
                 label="Training score")
        plt.plot(train_sizes, test_scores_mean, 'o-', color="g",
                 label="Cross-validation score")
     
        plt.legend(loc="best")
        return plt
    
    def plot_learning_curve_old(algo, X_train, X_test, y_train, y_test):
        """绘制学习曲线:只需要传入算法(或实例对象)、X_train、X_test、y_train、y_test"""
        """当使用该函数时传入算法,该算法的变量要进行实例化,如:PolynomialRegression(degree=2),变量 degree 要进行实例化"""
        train_score = []
        test_score = []
        for i in range(10, len(X_train)+1, 10):
            algo.fit(X_train[:i], y_train[:i])
            
            y_train_predict = algo.predict(X_train[:i])
            train_score.append(mean_squared_error(y_train[:i], y_train_predict))
        
            y_test_predict = algo.predict(X_test)
            test_score.append(mean_squared_error(y_test, y_test_predict))
        
        plt.plot([i for i in range(1, len(train_score)+1)],
                train_score, label="train")
        plt.plot([i for i in range(1, len(test_score)+1)],
                test_score, label="test")
        
        plt.legend()
        plt.show()
    
    # plot_learning_curve_old(LinearRegression(), train_data, test_data, train_target, test_target)
    
    # 线性回归模型学习曲线
    X = train_data.values
    y = train_target.values
     
    # 图一
    title = r"LinearRegression"
    cv = ShuffleSplit(n_splits=100, test_size=0.2, random_state=0)
    estimator = LinearRegression()    #建模
    plot_learning_curve(estimator, title, X, y, ylim=(0.5, 0.8), cv=cv, n_jobs=1)
    
    
    [0.70183463 0.66761103 0.66101945 0.65732898 0.65360375]
    [0.57364886 0.61882339 0.62809368 0.63012866 0.63158596]
    
    
    
    
    
    'matplotlib.pyplot' from '/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/pyplot.py'>
    

    3.1.2 KNN近邻回归

    for i in range(3,10):
        clf = KNeighborsRegressor(n_neighbors=i) # 最近三个
        clf.fit(train_data, train_target)
        score = mean_squared_error(test_target, clf.predict(test_data))
        print("KNeighborsRegressor:   ", score)
    
    
    KNeighborsRegressor:    0.27619208861976163
    KNeighborsRegressor:    0.2597627823313149
    KNeighborsRegressor:    0.2628212724567474
    KNeighborsRegressor:    0.26670982271241833
    KNeighborsRegressor:    0.2659603905091448
    KNeighborsRegressor:    0.26353694644788067
    KNeighborsRegressor:    0.2673470579477979
    
    # plot_learning_curve_old(KNeighborsRegressor(n_neighbors=5) , train_data, test_data, train_target, test_target)
    
    # 绘制K近邻回归学习曲线
    X = train_data.values
    y = train_target.values
     
    # K近邻回归
    title = r"KNeighborsRegressor"
    cv = ShuffleSplit(n_splits=100, test_size=0.2, random_state=0)
    
    estimator = KNeighborsRegressor(n_neighbors=8)    #建模
    plot_learning_curve(estimator, title, X, y, ylim=(0.3, 0.9), cv=cv, n_jobs=1)
    
    [0.61581146 0.68763995 0.71414969 0.73084172 0.73976273]
    [0.50369207 0.58753672 0.61969929 0.64062459 0.6560054 ]
    
    
    
    
    
    'matplotlib.pyplot' from '/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/pyplot.py'>
    

    3.1.3决策树回归

    clf = DecisionTreeRegressor() 
    clf.fit(train_data, train_target)
    score = mean_squared_error(test_target, clf.predict(test_data))
    print("DecisionTreeRegressor:   ", score)
    
    DecisionTreeRegressor:    0.6405298823529413
    
    # plot_learning_curve_old(DecisionTreeRegressor(), train_data, test_data, train_target, test_target)
    
    X = train_data.values
    y = train_target.values
     
    # 决策树回归
    title = r"DecisionTreeRegressor"
    cv = ShuffleSplit(n_splits=100, test_size=0.2, random_state=0)
    
    estimator = DecisionTreeRegressor()    #建模
    plot_learning_curve(estimator, title, X, y, ylim=(0.1, 1.3), cv=cv, n_jobs=1)
    
    [1. 1. 1. 1. 1.]
    [0.11833987 0.22982731 0.2797608  0.30950084 0.32628853]
    
    
    
    
    
    'matplotlib.pyplot' from '/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/pyplot.py'>
    

    3.1.4 随机森林回归

    clf = RandomForestRegressor(n_estimators=200) # 200棵树模型
    clf.fit(train_data, train_target)
    score = mean_squared_error(test_target, clf.predict(test_data))
    print("RandomForestRegressor:   ", score)
    # plot_learning_curve_old(RandomForestRegressor(n_estimators=200), train_data, test_data, train_target, test_target)
    
    RandomForestRegressor:    0.24087959640588236
    
    X = train_data.values
    y = train_target.values
     
    # 随机森林
    title = r"RandomForestRegressor"
    cv = ShuffleSplit(n_splits=100, test_size=0.2, random_state=0)
    
    estimator = RandomForestRegressor(n_estimators=200)    #建模
    plot_learning_curve(estimator, title, X, y, ylim=(0.4, 1.0), cv=cv, n_jobs=1)
    
    [0.93619796 0.94798334 0.95197393 0.95415054 0.95570763]
    [0.53953995 0.61531165 0.64366926 0.65941678 0.67319725]
    
    
    
    
    
    'matplotlib.pyplot' from '/opt/conda/envs/python35-paddle120-env/lib/python3.7/site-packages/matplotlib/pyplot.py'>
    

    3.1.5 Gradient Boosting

    from sklearn.ensemble import GradientBoostingRegressor
    
    myGBR = GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
                                      learning_rate=0.03, loss='huber', max_depth=14,
                                      max_features='sqrt', max_leaf_nodes=None,
                                      min_impurity_decrease=0.0, min_impurity_split=None,
                                      min_samples_leaf=10, min_samples_split=40,
                                      min_weight_fraction_leaf=0.0, n_estimators=10,
                                      warm_start=False)
    # 参数已删除 presort=True, random_state=10, subsample=0.8, verbose=0,
    
    myGBR.fit(train_data, train_target)
    score = mean_squared_error(test_target, clf.predict(test_data))
    print("GradientBoostingRegressor:   ", score)
    
    
    myGBR = GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
                                      learning_rate=0.03, loss='huber', max_depth=14,
                                      max_features='sqrt', max_leaf_nodes=None,
                                      min_impurity_decrease=0.0, min_impurity_split=None,
                                      min_samples_leaf=10, min_samples_split=40,
                                      min_weight_fraction_leaf=0.0, n_estimators=10,
                                      warm_start=False)
    #为了快速展示n_estimators设置较小,实战中请按需设置
    
    # plot_learning_curve_old(myGBR, train_data, test_data, train_target, test_target)
    
    
    GradientBoostingRegressor:    0.906640574789251
    
    X = train_data.values
    y = train_target.values
     
    # GradientBoosting
    title = r"GradientBoostingRegressor"
    cv = ShuffleSplit(n_splits=10, test_size=0.2, random_state=0)
    
    estimator = GradientBoostingRegressor(alpha=0.9, criterion='friedman_mse', init=None,
                                      learning_rate=0.03, loss='huber', max_depth=14,
                                      max_features='sqrt', max_leaf_nodes=None,
                                      min_impurity_decrease=0.0, min_impurity_split=None,
                                      min_samples_leaf=10, min_samples_split=40,
                                      min_weight_fraction_leaf=0.0, n_estimators=10,
                                      warm_start=False)  #建模
    
    plot_learning_curve(estimator, title, X, y, ylim=(0.4, 1.0), cv=cv, n_jobs=1)
    
    #为了快速展示n_estimators设置较小,实战中请按需设置
    

    3.1.6 lightgbm回归

    # lgb回归模型
    clf = lgb.LGBMRegressor(
            learning_rate=0.01,
            max_depth=-1,
            n_estimators=10,
            boosting_type='gbdt',
            random_state=2019,
            objective='regression',
        )
    # #为了快速展示n_estimators设置较小,实战中请按需设置
    # 训练模型
    clf.fit(
            X=train_data, y=train_target,
            eval_metric='MSE',
            verbose=50
        )
    
    score = mean_squared_error(test_target, clf.predict(test_data))
    print("lightGbm:   ", score)
    
    lightGbm:    0.906640574789251
    
    X = train_data.values
    y = train_target.values
     
    # LGBM
    title = r"LGBMRegressor"
    cv = ShuffleSplit(n_splits=10, test_size=0.2, random_state=0)
    
    estimator = lgb.LGBMRegressor(
        learning_rate=0.01,
        max_depth=-1,
        n_estimators=10,
        boosting_type='gbdt',
        random_state=2019,
        objective='regression'
        )    #建模
    
    plot_learning_curve(estimator, title, X, y, ylim=(0.4, 1.0), cv=cv, n_jobs=1)
    
    #为了快速展示n_estimators设置较小,实战中请按需设置
    

    4.篇中总结

    在工业蒸汽量预测上篇中,主要讲解了数据探索性分析:查看变量间相关性以及找出关键变量;数据特征工程对数据精进:异常值处理、归一化处理以及特征降维;在进行归回模型训练涉及主流ML模型:决策树、随机森林,lightgbm等。下一篇中将着重讲解模型验证、特征优化、模型融合等。

    原项目链接:https://www.heywhale.com/home/column/64141d6b1c8c8b518ba97dcc

    参考链接:https://tianchi.aliyun.com/course/278/3427

  • 相关阅读:
    如何做接口测试呢?接口测试有哪些工具
    这个简单的小功能,半年为我们产研团队省下213个小时
    B. Different Divisors- Codeforces Round #696 (Div. 2)
    别在傻傻的封装对象返回了,来看看这篇SpringBoot返回结果统一包装
    React:数据流
    【网络空间实战攻防能力训练】DHCP欺骗
    简述电子企业MES管理系统解决方案的实施策略
    python第三方库pygame的使用
    docker 开启 nginx 容器
    通达OA v12流程中心
  • 原文地址:https://www.cnblogs.com/ting1/p/17271523.html