• 刷爆 LeetCode 周赛 339,贪心 / 排序 / 拓扑排序 / 平衡二叉树


    本文已收录到 AndroidFamily,技术和职场问题,请关注公众号 [彭旭锐] 提问。

    大家好,我是小彭。

    上周末是 LeetCode 第 339 场周赛,你参加了吗?这场周赛覆盖的知识点比较少,前三题很简单,第四题上难度。


    周赛大纲

    2609. 最长平衡子字符串(Easy)

    • 模拟:$O(n)$

    2610. 转换二维数组(Medium)

    • 贪心:$O(n)$

    2611. 老鼠和奶酪(Medium)

    • 排序 + 贪心:$O(nlgn)$

    2612. 最少翻转操作数(Hard)

    • 题解一:拓扑排序 · 超出时间限制 $O(nk)$
    • 题解二:BFS + 平衡二叉树 $O(nlgn)$

    2609. 最长平衡子字符串(Easy)

    题目地址

    https://leetcode.cn/problems/find-the-longest-balanced-substring-of-a-binary-string/

    题目描述

    给你一个仅由 0 和 1 组成的二进制字符串 s 。

    如果子字符串中 所有的 0 都在 1 之前 且其中 0 的数量等于 1 的数量,则认为 s 的这个子字符串是平衡子字符串。请注意,空子字符串也视作平衡子字符串。

    返回  s 中最长的平衡子字符串长度。

    子字符串是字符串中的一个连续字符序列。

    题解(模拟)

    简单模拟题。

    维护连续 0 的计数 cnt0 和连续 1 的计数 cnt1,并在 cnt0 == cnt1 时更新最长平衡子串长度为 2 * cnt1。另外,在每段 0 的起始位置重新计数。

    class Solution {
        fun findTheLongestBalancedSubstring(s: String): Int {
            var index = 0
            var cnt0 = 0
            var cnt1 = 0
            var ret = 0
            while (index < s.length) {
                if (s[index] == '0') {
                    // 每段 0 的起始位置清零
                    if (index > 0 && s[index - 1] == '1') {
                        cnt0 = 0
                        cnt1 = 0
                    }
                    cnt0++
                } else {
                    cnt1++
                }
                if (cnt1 <= cnt0) ret = Math.max(ret, cnt1 * 2)
                index++
            }
            return ret
        }
    }
    

    复杂度分析:

    • 时间复杂度:$O(n)$ 其中 $n$ 为 $nums$ 数组的长度;
    • 空间复杂度:$O(1)$ 仅使用常数级别变量。

    2610. 转换二维数组(Medium)

    题目地址

    https://leetcode.cn/problems/convert-an-array-into-a-2d-array-with-conditions/

    题目描述

    给你一个整数数组 nums 。请你创建一个满足以下条件的二维数组:

    • 二维数组应该  包含数组 nums 中的元素。
    • 二维数组中的每一行都包含 不同 的整数。
    • 二维数组的行数应尽可能  。

    返回结果数组。如果存在多种答案,则返回其中任何一种。

    请注意,二维数组的每一行上可以存在不同数量的元素。

    题解(贪心)

    贪心思路:首先计算每个元素的出现次数,为了避免同一行的重复,将重复元素从上到下排列到不同行中。

    优化:可以在一次遍历中完成,在出现更大出现次数时增加一行,在更新元素技术 cnt 后插入到第 cnt - 1 行。

    class Solution {
        fun findMatrix(nums: IntArray): ListInt>> {
            val cnts = IntArray(201)
            val ret = LinkedListInt>>()
            var maxCnt = 0
            // 计数
            for (num in nums) {
                // 累加
                val curCnt = ++cnts[num]
                // 创建新行
                if (curCnt > maxCnt) {
                    maxCnt = curCnt
                    ret.add(LinkedList<Int>())
                }
                // 分布
                ret[curCnt - 1].add(num)
            }
            return ret
        }
    }
    

    复杂度分析:

    • 时间复杂度:$O(n)$ 其中 $n$ 为 $nums$ 数组的长度,每个元素访问一次;
    • 空间复杂度:$O(U)$ 计数数组空间。

    2611. 老鼠和奶酪(Medium)

    题目地址

    https://leetcode.cn/problems/mice-and-cheese/

    题目描述

    有两只老鼠和 n 块不同类型的奶酪,每块奶酪都只能被其中一只老鼠吃掉。

    下标为 i 处的奶酪被吃掉的得分为:

    • 如果第一只老鼠吃掉,则得分为 reward1[i] 。
    • 如果第二只老鼠吃掉,则得分为 reward2[i] 。

    给你一个正整数数组 reward1 ,一个正整数数组 reward2 ,和一个非负整数 k 。

    请你返回第一只老鼠恰好吃掉 k 块奶酪的情况下,最大 得分为多少。

    题解(排序 + 贪心)

    容易理解:为了使最终得分最大,应该让每只老鼠吃到尽可能大的奶酪。

    由于两只老鼠吃的奶酪是互斥关系,因此我们可以先假设所有奶酪被第一只老鼠食得,然后再挑选 n - k 个奶酪还给第二只老鼠。

    那么,对于每个位置 i,将奶酪从第一只老鼠还给第二只老鼠存在差值 diff = reward2[i] - reward1[i],表示得分的差值为 diff。差值为正得分变大,差值为负得分降低,显然降低越少越好。

    因此,我们的算法是对 diff 排序,将得分降低越大的位置保留给第一只老鼠,其他还给第二只老鼠。

    class Solution {
        fun miceAndCheese(reward1: IntArray, reward2: IntArray, k: Int): Int {
            // 贪心:优先选择差值最大的位置
            val n = reward1.size
            var ret = 0
            val indexs = Array(n) { it }
            // 升序
            Arrays.sort(indexs) { i1, i2 ->
                (reward2[i1] - reward1[i1]) - (reward2[i2] - reward1[i2])
            }
            for (i in 0 until n) {
                ret += if (i < k) {
                    reward1[indexs[i]]
                } else {
                    reward2[indexs[i]]
                }
            }
            return ret
        }
    }
    

    复杂度分析:

    • 时间复杂度:$O(nlgn + n)$ 其中 $n$ 为 $nums$ 数组的长度;
    • 空间复杂度:$O(n + lgn)$ 索引数组和递归栈空间。

    2612. 最少翻转操作数(Hard)

    题目地址

    https://leetcode.cn/problems/minimum-reverse-operations/

    题目描述

    给你一个整数 n 和一个在范围 [0, n - 1] 以内的整数 p ,它们表示一个长度为 n 且下标从 0 开始的数组 arr ,数组中除了下标为 p 处是 1 以外,其他所有数都是 0 。

    同时给你一个整数数组 banned ,它包含数组中的一些位置。banned 中第 i 个位置表示 arr[banned[i]] = 0 ,题目保证 banned[i] != p 。

    你可以对 arr 进行 若干次 操作。一次操作中,你选择大小为 k 的一个 子数组 ,并将它 翻转 。在任何一次翻转操作后,你都需要确保 arr 中唯一的 1 不会到达任何 banned 中的位置。换句话说,arr[banned[i]] 始终 保持 0 。

    请你返回一个数组 ans ,对于 **[0, n - 1] 之间的任意下标 i ,ans[i] 是将 1 放到位置 i 处的 最少 翻转操作次数,如果无法放到位置 i 处,此数为 -1 。

    • 子数组 指的是一个数组里一段连续 非空 的元素序列。
    • 对于所有的 i ,ans[i] 相互之间独立计算。
    • 将一个数组中的元素 翻转 指的是将数组中的值变成 相反顺序 。

    题解一(拓扑排序 · 超出时间限制)

    分析 1:对于翻转窗口 [L, R] 中的位置 i,翻转后的下标为 $\frac{L+R}{2} + (\frac{L+R}{2} - i) = L + R - i$

    分析 2:首先位置 p 的翻转次数恒等于 0,而 banned 数组表示的位置翻转次数恒等于 -1。

    分析 3:当位置 i 位于翻转窗口的左半部分时,将翻转到更大位置;当位置 i 位于翻转窗口的右半部分时,将翻转到更小位置;

    分析 4:现在我们需要分析位置 i (初始 i 为 0 )可以翻转到的位置:

    • 情况 1:如果将 i 作为翻转窗口的左右边界,则有:
      • 位于左边界时,翻转后的下标为 i + k - 1
      • 位于有边界时,翻转后的下标为 i - k + 1
    • 情况 2:如果将 i 放在翻转窗口内部,则所有翻转后的下标正好构成差值为 2 的等差数列。

    因此,i 可以翻转的区间为 [i - k + 1, i + k - 1] 中间隔 2 的位置(排除 banned 数组),或者理解为奇偶性相同的下标。

    分析 5:由于翻转窗口有位置限制,会限制翻转:

    • 窗口左边界在位置 0 时,且 i 位于翻转窗口的右半部分时(准备向左翻),则翻转后的位置是 0 + (k - 1) - i = k - 1 - i。由于窗口无法继续左移,所以小于 k - i - 1 的位置都不可达;
    • 同理,窗口右边界位于 n - 1 时,且 i 位于翻转窗口的左边部分时(准备向右翻),则翻转后的位置是 (n - k) + (n - 1) - i = 2n - k - i - 1。由于窗口无法继续右移,所以大于 2n - k - i - 1 的位置都不可达。

    综上,可得翻转后区间为 [max(i - k + 1, k - i - 1), min(i + k - 1, 2n - k - i - 1)] 中与 i 奇偶性相同的位置。

    至此,容易发现问题可以用拓扑排序(BFS 写法)解决:初始时将 p 位置入队,随后每一轮的翻转次数 + 1,并将该位置入队。

    class Solution {
        fun minReverseOperations(n: Int, p: Int, banned: IntArray, k: Int): IntArray {
            val ret = IntArray(n) { -1 }
            // 初始位
            ret[p] = 0
            // 禁止位
            val bannedSet = banned.toHashSet()
            // BFS(最小跳转索引)
            val queue = LinkedList<Int>()
            queue.offer(p)
            while (!queue.isEmpty()) {
                val i = queue.poll()!!
                val min = Math.max(i - k + 1, k - i - 1)
                val max = Math.min(i + k - 1, 2 * n - k - i - 1)
                val curStep = ret[i] + 1
                for (j in min..max step 2) {
                    // 不可达
                    if (bannedSet.contains(j)) continue
                    // 已访问
                    if (ret[j] != -1) continue
                    // 可达
                    ret[j] = curStep
                    // 入队
                    queue.offer(j)
                }
            }
            return ret
        }
    }
    

    复杂度分析:

    • 时间复杂度:$O(n·k)$ 每个元素最多访问 1 次,且每轮最多需要访问 $k$ 个元素。
    • 空间复杂度:$O(n)$ 队列的长度最大为 $n$。

    题解二(BFS + 平衡二叉树)

    在题解一中,当 k 比较大时每轮 BFS 中会重复判断已经被标记过的位置,如何避免呢?我们可以提前将所有下标加入到散列表中,在每次标记后将下标从散列表移除,这样能避免重复访问已经标记过的位置。

    其次,由于每轮中需要标记的区间位于 [min, max],那么我们可以将散列表升级为基于平衡二叉树的 TreeSet,以便在 O(lgn) 时间内找到区间中的元素。具体方式是寻找树中大于等于 min 的最小元素(且小于等于 max),将其标记和移除。

    最后,由于偶数下标和奇数下标是分开的,所以需要建立两个平衡二叉树。

    class Solution {
        fun minReverseOperations(n: Int, p: Int, banned: IntArray, k: Int): IntArray {
            val ret = IntArray(n) { -1 }
            // 初始位
            ret[p] = 0
            // 禁止位
            val bannedSet = banned.toHashSet()
            // 平衡二叉树
            val sets = Array(2) { TreeSet<Int>() }
            for (i in 0 until n) {
                if (i != p && !bannedSet.contains(i)) sets[i % 2].add(i)
            }
            // BFS(最小跳转索引)
            val queue = LinkedList<Int>()
            queue.offer(p)
            while (!queue.isEmpty()) {
                val i = queue.poll()!!
                val min = Math.max(i - k + 1, k - i - 1)
                val max = Math.min(i + k - 1, 2 * n - k - i - 1)
                val curStep = ret[i] + 1
                // 根据左端点确定奇偶性(右端点也行)
                val set = sets[min % 2]
                // 枚举平衡树中的 [min,max] 区间
                while (true) {
                    val index = set.ceiling(min) ?: break // 大于等于 min 的最小键值
                    if (index > max) break
                    // 标记并删除
                    set.remove(index)
                    ret[index] = curStep
                    // 入队
                    queue.offer(index)
                }
            }
            return ret
        }
    }
    

    复杂度分析:

    • 时间复杂度:$O(nlgn + nlgn)$ 建平衡树为 $O(nlgn)$,BFS 中每个元素最多删除一次,每轮需要 $O(lgn)$ 时间找到左边界,整体是 $O(nlgn)$;
    • 空间复杂度:$O(n)$ 平衡二叉树空间。

    点击上方按钮关注
    每周持续原创更新
    与你一起深度思考



    The End

    —— 我 们 下 次 见 ——

  • 相关阅读:
    springboot+学生信息管理 毕业设计-附源码191219
    nginx的rev->handler的更新历程
    【华为OD机试真题 python】 跳格子【2022 Q4 | 200分】
    五大亮点探索互联网医院源码的创新应用方式
    第九章Redis持久化
    【Vue 开发实战】实战篇 # 45:如何构建可交互的组件文档让代码高亮的显示在页面
    【Python】接口自动化 - requests请求上传文件的接口
    「 程序员的理财与风险控制」让财富跟你一起持续成长:增额终身寿
    Oracle统计信息问题排查常用SQL
    高纬度矩阵乘法的意义
  • 原文地址:https://www.cnblogs.com/pengxurui/p/17284331.html