• 2022.12.2Treats for the Cows POJ - 3186(区间dp


    原题链接:传送门

    FJ has purchased N (1 <= N <= 2000) yummy treats for the cows who get money for giving vast amounts of milk. FJ sells one treat per day and wants to maximize the money he receives over a given period time.

    The treats are interesting for many reasons:

    • The treats are numbered 1..N and stored sequentially in single file in a long box that is open at both ends. On any day, FJ can retrieve one treat from either end of his stash of treats.
    • Like fine wines and delicious cheeses, the treats improve with age and command greater prices.
    • The treats are not uniform: some are better and have higher intrinsic value. Treat i has value v(i) (1 <= v(i) <= 1000).
    • Cows pay more for treats that have aged longer: a cow will pay v(i)*a for a treat of age a.

    Given the values v(i) of each of the treats lined up in order of the index i in their box, what is the greatest value FJ can receive for them if he orders their sale optimally?

    The first treat is sold on day 1 and has age a=1. Each subsequent day increases the age by 1.

    Input

    Line 1: A single integer, N

    Lines 2..N+1: Line i+1 contains the value of treat v(i)

    Output

    Line 1: The maximum revenue FJ can achieve by selling the treats

    Sample

    InputcopyOutputcopy
    5
    1
    3
    1
    5
    2
    43

    Hint

    Explanation of the sample:

    Five treats. On the first day FJ can sell either treat #1 (value 1) or treat #5 (value 2).

    FJ sells the treats (values 1, 3, 1, 5, 2) in the following order of indices: 1, 5, 2, 3, 4, making 1x1 + 2x2 + 3x3 + 4x1 + 5x5 = 43.

    题意:

    n个数字v(1),v(2),...,v(n-1),v(n),每次可以取出最左端的数字或者取出最右端的数字,一共取n次取完。如果第i次取的数字是x,可以获得i*x的价值。规划取数顺序,使获得的总价值之和最大 。

    思路:

    区间dp,定义dp[i][j]状态表示为从i取到j的最大总价值和,每次只能取出最左端的数字或者取出最右端的数字,那么也就是说dp[i][j]的状态是由dp[i+1][j]dp[i][j-1]决定的,所以我们倒着从dp[n][n]开始更新到dp[1][n]一定是正确的,另外值得注意的是当i==j此时一定是第n次取走的状态,所以dp[i][i]=n\times a[i],由于上一个状态选了j-i也就是说当前是选的第n-j+i个数。

    状态转移方程

    dp[i][j]=\left\{\begin{matrix} n\times a[i] ,i==j& \\dp[i+1][j]+(n-j+i)\times a[i]+dp[i][j-1]+(n-j+i)\times a[j],i\neq j& \end{matrix}\right.

    那么AC代码如下:

    1. #include
    2. int n, a[2010], f[2010][2010];
    3. signed main(){
    4. scanf("%d", &n);
    5. for(int i = 1; i <= n; i++){
    6. scanf("%d", &a[i]);
    7. }
    8. for(int i = n; i >= 1; i--){
    9. for(int j = i; j <= n; j++){
    10. if(j == i) f[i][j] += n * a[i];
    11. else f[i][j] += max(f[i + 1][j] + a[i] * (n - j + i), f[i][j - 1] + a[j] * (n - j + i));
    12. }
    13. }
    14. printf("%d\n", f[1][n]);
    15. return 0;
    16. }

     

     

  • 相关阅读:
    SSL证书系列--又拍云Let’s Encrypt免费DV SSL证书使用教程
    leetcode-每日一题899. 有序队列(思维题)
    Altium Designer_Gerber文件/生产文件导出
    SSM+人才交流平台 毕业设计-附源码221022
    Mybatis入门-初步环境搭建
    【ES实战】索引mapping的动态设置
    iphone苹果手机如何连接电脑进行投屏?
    HACCP认证的流程
    数据结构之七大排序
    Adaptive autosar DM 诊断管理
  • 原文地址:https://blog.csdn.net/weixin_62802134/article/details/128211137