https://leetcode.com/problems/fibonacci-number/
The Fibonacci numbers, commonly denoted F(n)
form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0
and 1
. That is,
F(0) = 0, F(1) = 1
F(n) = F(n - 1) + F(n - 2), for n > 1.
Given n
, calculate F(n)
.
Example 1:
Input: n = 2
Output: 1
Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.
Example 2:
Input: n = 3
Output: 2
Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.
Example 3:
Input: n = 4
Output: 3
Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3.
Constraints:
0 <= n <= 30
方法一:循环遍历
方法二:尾递归
public class FibonacciNumber {
//方法一
public int fib(int n) {
int first = 0, second = 1;
for(int i = 1; i <= n; i++) {
int newOne = first + second;
first = second;
second = newOne;
}
return first;
}
//方法二
public int fib2(int n) {
return fib2(n, 0, 1, 0);
}
private int fib2(int n, int first, int second, int count) {
if(n == count) {
return first;
}
return fib2(n, second, first + second, count + 1);
}
}
import static org.junit.Assert.*;
import org.junit.Test;
public class FibonacciNumberTest {
@Test
public void test() {
FibonacciNumber fObj = new FibonacciNumber();
assertEquals(1, fObj.fib(2));
assertEquals(2, fObj.fib(3));
assertEquals(3, fObj.fib(4));
assertEquals(1, fObj.fib2(2));
assertEquals(2, fObj.fib2(3));
assertEquals(3, fObj.fib2(4));
}
}