有理多项式系数(rational polynomial coefficients,RPC),实质是有理函数模型(Rational Function Model-RFM)。它可建立起像点和空间坐标之间的关系,不需要内外方位元素,回避成像的几何过程,可以广泛用于线阵影像处理中。RFM将像点坐标表示为以相应地面点空间坐标为自变量的多项式的比值。
卫星成像期间卫星的姿态控制导致影像的严格几何模型(所谓严格几何模型是指基于传统共线方程的严格几何模型)形式极其复杂,要利用其提取地球空间三维信息,需要在向用户提供影像的同时把卫星详细的轨道星历、传感器成像参数、成像方式等信息一并交付,并且最终用户需要具有摄影测量的专业知识和复杂的应用处理系统。为了降低对用户专业水平的需求,扩大用户范围,同时保护卫星的核心技术参数不被泄露,RPC定位模型应运而生。
RPC是一种与传感器无关的通用型成像几何模型。RPC是传感器严格几何模型的拟合形式,这里的严格几何模型是指通过平台载荷测量的平台运行轨迹参数﹑姿态参数﹑传感器安装参数及传感器内部几何参数等构建的像一地关系几何模型。由于这些参数不可避免地存在不同性质的误差,其拟合模型RPC也就存在着相应的误差。校正 RPC误差的传统方法是对地面点通过RPC投射到像方的像点进行一个多项式纠正,使投射像点坐标与测量像点坐标相吻合,从而达到消除误差的目的。
RPC 模型利用多项式的比值建立探测器像点坐标 d(line, sample)(可理解为行列号)与其对应的地面成像点坐标 D(latitude, lontitude, height) 的关系。RPC 也是各种传感器几何模型的一种通用表达形式,RPC 的正算形式为
F
1
=
L
n
=
N
u
m
L
(
U
,
V
,
W
)
Den
L
(
U
,
V
,
W
)
F
2
=
S
n
=
N
u
m
S
(
U
,
V
,
W
)
DenS
(
U
,
V
,
W
)
式中:
Num
L
(
U
,
V
,
W
)
=
a
1
+
a
2
V
+
a
3
U
+
a
4
W
+
a
5
V
U
+
a
6
V
W
+
a
7
U
W
+
a
8
V
2
+
a
9
U
2
+
a
10
W
2
+
a
11
U
V
W
+
a
12
V
3
+
a
13
V
U
2
+
a
14
V
W
2
+
a
15
V
2
U
+
a
16
U
3
+
a
17
U
W
2
+
a
18
V
2
W
+
a
19
U
2
W
+
a
20
W
3
;
\\ \quad \operatorname{Num} L(U, V, W)=a_1+a_2 V+a_3 U+a_4 W+a_5 V U+a_6 V W+a_7 U W+a_8 V^2+a_9 U^2+a_{10} W^2+a_{11} U V W+a_{12} V^3+a_{13} V U^2+a_{14} V W^2+a_{15} V^2 U+a_{16} U^3+a_{17} U W^2+a_{18} V^2 W+a_{19} U^2 W+a_{20} W^3 ;
NumL(U,V,W)=a1+a2V+a3U+a4W+a5VU+a6VW+a7UW+a8V2+a9U2+a10W2+a11UVW+a12V3+a13VU2+a14VW2+a15V2U+a16U3+a17UW2+a18V2W+a19U2W+a20W3;
Den
L
(
U
,
V
,
W
)
=
b
1
+
b
2
V
+
,
⋯
,
+
b
19
U
2
W
+
b
20
W
3
Num
S
(
U
,
V
,
W
)
=
c
1
+
c
2
V
+
,
⋯
,
+
c
19
U
2
W
+
c
20
W
3
DenS
(
U
,
V
,
W
)
=
d
1
+
d
2
V
+
,
⋯
,
+
d
19
U
2
W
+
d
20
W
3
在式中,
a
1
,
a
2
,
⋯
,
a
20
,
b
1
,
b
2
,
⋯
,
b
19
,
b
20
,
c
1
,
c
2
,
⋯
,
c
19
,
c
20
,
d
1
,
d
2
,
⋯
,
d
19
,
d
20
a_1, a_2, \cdots, a_{20}, b_1, b_2, \cdots, b_{19}, b_{20},c_1, c_2, \cdots, c_{19}, c_{20},d_1, d_2, \cdots, d_{19}, d_{20}
a1,a2,⋯,a20,b1,b2,⋯,b19,b20,c1,c2,⋯,c19,c20,d1,d2,⋯,d19,d20, 为计算系数。等式左边为像方坐标:
L
n
L_n
Ln 为归一化行坐标, 设行坐 标为
r
r
r, 行偏移参数为
L
I
N
E
_
O
F
F
LINE\_OFF
LINE_OFF, 行缩放参数为LINE_SCALE。
L
n
=
(
r
−
L
I
N
E
_
O
F
F
)
/
L
I
N
E
_
S
C
A
L
E
;
L_n=(r-{LINE\_OFF})/LINE\_SCALE;
Ln=(r−LINE_OFF)/LINE_SCALE;
S
n
S_n
Sn为归一化列坐标,设列坐标为
c
c
c,列偏移参数为SAMP_OFF,列缩放参数为SAMP_SCALE,则
S
n
=
(
c
−
S
A
M
P
−
O
F
F
)
/
S
A
M
P
−
S
C
A
L
E
;
S_n=(c-{SAMP_{-}OFF})/SAMP_{-}SCALE;
Sn=(c−SAMP−OFF)/SAMP−SCALE;
式(1)-(5)中等式右边为物方坐标:
U
U
U为归一化纬度坐标,设纬度坐标为
B
B
B,纬度偏移参数为
L
A
T
−
LAT_{-}
LAT−
O
F
F
OFF
OFF,纬度缩放参数为
L
A
T
−
S
C
A
L
E
LAT_{-}SCALE
LAT−SCALE,则
U
=
(
B
−
L
A
T
_
O
F
F
)
/
L
A
T
_
S
C
A
L
E
;
U=(B{-LAT\_OFF})/LAT\_{}SCALE\text{;}
U=(B−LAT_OFF)/LAT_SCALE;
V
V
V为归一化经度坐标,设经度坐标为
L
L
L,经度偏移参数为
L
O
N
G
−
O
F
F
LONG_{-}OFF
LONG−OFF,经度缩放参数为
L
O
N
G
−
S
C
A
L
E
LONG_{-}SCALE
LONG−SCALE,则
V
=
(
L
−
L
O
N
G
_
O
F
F
)
/
L
O
N
G
−
S
C
A
L
E
;
V=\left(L-L{ONG}\_OFF\right)/LONG_{-}SCALE\text{;}
V=(L−LONG_OFF)/LONG−SCALE;
W
W
W为归一化高程坐标,设高程坐标为
H
H
H,高程
H
E
I
G
H
T
_
S
C
A
L
E
HEIGHT\_SCALE
HEIGHT_SCALE,则
W
=
(
H
−
H
E
I
G
H
T
−
O
F
F
)
/
H
E
I
G
H
T
−
S
C
A
L
E
W=\left(H-HEIGHT_{-}OFF\right)/HEIGHT_{-}SCALE
W=(H−HEIGHT−OFF)/HEIGHT−SCALE
刘江, 岳庆兴, and 邱振戈. “RPC校正方法研究.” 国土资源遥感 1(2013):5.
http://geotiff.maptools.org/rpc_prop.html
RPC和RPB只是格式不一样,内容,基本参数都是一致的。
博文:遥感 RPC, RPB文件相关信息给出了详细的介绍以及样例。
博文:Matlab实现RPC正算反算提供了Matlab代码。功能如下:
博文:(Python)使用Gdal进行批量的影像RPC正射校正介绍了使用Python来进行进行RPC模型的正射校正,最终实现了批量正射的效果。
博文:(Python)卫星RPC有理多项式模型读取与正反投影坐标计算原理与实现介绍了RPC几何定位模型的基本知识,然后提供了RPC模型代码的实现并进行了简单的使用示范,最后评估的该代码的精度与性能。
https://blog.csdn.net/stone_tigerLI/article/details/122123424