• Python:基于dlib,numpy进行换脸实践



    简介

    基于dlib进行人脸互换操作。

    实践

    1. 环境准备

    # pip install boost
    # pip install cmake
    # pip install dlib
    
    • 1
    • 2
    • 3

    如果仍然安装失败,请参考 https://blog.csdn.net/qq_45070929/article/details/118612849,进行c++相关组件安装教程

    2. 代码如下

    # -*- coding: utf-8 -*-
    """
    Created on Fri Aug  4 15:10:26 2017
    
    @author: Quantum Liu
    
    reference:https://github.com/matthewearl/faceswap
    """
    
    # pip install boost
    # pip install cmake
    # pip install dlib
    
    import sys, os, traceback
    import cv2
    import dlib
    import numpy as np
    
    
    class TooManyFaces(Exception):
        '''
        定位到太多脸
        '''
        pass
    
    
    class NoFace(Exception):
        '''
        没脸
        '''
        pass
    
    
    class Faceswapper():
        '''
        人脸交换器类
        实例化时载入多个头照片资源
        '''
    
        def __init__(self, heads_list=[], predictor_path="H:/FaceSwapper/shape_predictor_68_face_landmarks.dat"):
            '''
            head_list:./data/shape_predictor_68_face_landmarks.dat
                头(背景和发型)来源图片的路径的字符串列表,根据此列表在实例化时载入多个头像资源,
                并获得面部识别点坐标,以字典形式存储,键名为文件名
            predictor_path:
                dlib资源的路径
            '''
            # 五官等标记点
            self.PREDICTOR_PATH = predictor_path
            self.FACE_POINTS = list(range(17, 68))
            self.MOUTH_POINTS = list(range(48, 61))
            self.RIGHT_BROW_POINTS = list(range(17, 22))
            self.LEFT_BROW_POINTS = list(range(22, 27))
            self.RIGHT_EYE_POINTS = list(range(36, 42))
            self.LEFT_EYE_POINTS = list(range(42, 48))
            self.NOSE_POINTS = list(range(27, 35))
            self.JAW_POINTS = list(range(0, 17))
    
            # 人脸的完整标记点
            self.ALIGN_POINTS = (self.LEFT_BROW_POINTS + self.RIGHT_EYE_POINTS + self.LEFT_EYE_POINTS +
                                 self.RIGHT_BROW_POINTS + self.NOSE_POINTS + self.MOUTH_POINTS)
    
            # 来自第二张图(脸)的标记点,眼、眉、鼻子、嘴,这一部分标记点将覆盖第一张图的对应标记点
            self.OVERLAY_POINTS = [
                self.LEFT_EYE_POINTS + self.RIGHT_EYE_POINTS + self.LEFT_BROW_POINTS + self.RIGHT_BROW_POINTS,
                self.NOSE_POINTS + self.MOUTH_POINTS]
    
            # 颜色校正参数
            self.COLOUR_CORRECT_BLUR_FRAC = 0.6
    
            # 人脸定位、特征提取器,来自dlib
            self.detector = dlib.get_frontal_face_detector()
            self.predictor = dlib.shape_predictor(self.PREDICTOR_PATH)
    
            # 头像资源
            self.heads = {}
            if heads_list:
                self.load_heads(heads_list)
    
        def load_heads(self, heads_list):
            '''
            根据head_list添加更多头像资源
            '''
            self.heads.update({os.path.split(name)[-1]: (self.read_and_mark(name)) for name in heads_list})
    
        def get_landmarks(self, im, fname, n=1):
            '''
            人脸定位和特征提取,定位到两张及以上脸或者没有人脸将抛出异常
            im:
                照片的numpy数组
            fname:
                照片名字的字符串
            返回值:
                人脸特征(x,y)坐标的矩阵
            '''
            rects = self.detector(im, 1)
    
            if len(rects) > n:
                raise TooManyFaces('No face in ' + fname)
            if len(rects) < 0:
                raise NoFace('Too many faces in ' + fname)
            return np.matrix([[p.x, p.y] for p in self.predictor(im, rects[0]).parts()])
    
        def read_im(self, fname, scale=1):
            '''
            读取图片
            '''
            # =============================================================================
            #         im = cv2.imread(fname, cv2.IMREAD_COLOR)
            # =============================================================================
            im = cv2.imdecode(np.fromfile(fname, dtype=np.uint8), -1)
            if type(im) == type(None):
                print(fname)
                raise ValueError('Opencv read image {} error, got None'.format(fname))
            return im
    
        def read_and_mark(self, fname):
            im = self.read_im(fname)
            return im, self.get_landmarks(im, fname)
    
        def resize(self, im_head, landmarks_head, im_face, landmarks_face):
            '''
            根据头照片和脸照片的大小(分辨率)调整图片大小,增强融合效果
            '''
            scale = np.sqrt((im_head.shape[0] * im_head.shape[1]) / (im_face.shape[0] * im_face.shape[1]))
            if scale > 1:
                im_head = cv2.resize(im_head, (int(im_head.shape[1] / scale), int(im_head.shape[0] / scale)))
                landmarks_head = (landmarks_head / scale).astype(landmarks_head.dtype)
            else:
                im_face = cv2.resize(im_face, (int(im_face.shape[1] * scale), int(im_face.shape[0] * scale)))
                landmarks_face = (landmarks_face * scale).astype(landmarks_face.dtype)
            return im_head, landmarks_head, im_face, landmarks_face
    
        def draw_convex_hull(self, im, points, color):
            '''
            勾画多凸边形
            '''
            points = cv2.convexHull(points)
            cv2.fillConvexPoly(im, points, color=color)
    
        def get_face_mask(self, im, landmarks, ksize=(11, 11)):
            '''
            获得面部遮罩
            '''
            mask = np.zeros(im.shape[:2], dtype=np.float64)
    
            for group in self.OVERLAY_POINTS:
                self.draw_convex_hull(mask,
                                      landmarks[group],
                                      color=1)
    
            mask = np.array([mask, mask, mask]).transpose((1, 2, 0))
    
            mask = (cv2.GaussianBlur(mask, ksize, 0) > 0) * 1.0
            mask = cv2.GaussianBlur(mask, ksize, 0)
    
            return mask
    
        def transformation_from_points(self, points1, points2):
            """
            Return an affine transformation [s * R | T] such that:
    
                sum ||s*R*p1,i + T - p2,i||^2
    
            is minimized.
            计算仿射矩阵
            参考:https://github.com/matthewearl/faceswap/blob/master/faceswap.py
            """
            # Solve the procrustes problem by subtracting centroids, scaling by the
            # standard deviation, and then using the SVD to calculate the rotation. See
            # the following for more details:
            #   https://en.wikipedia.org/wiki/Orthogonal_Procrustes_problem
    
            points1 = points1.astype(np.float64)
            points2 = points2.astype(np.float64)
    
            c1 = np.mean(points1, axis=0)
            c2 = np.mean(points2, axis=0)
            points1 -= c1
            points2 -= c2
    
            s1 = np.std(points1)
            s2 = np.std(points2)
            points1 /= s1
            points2 /= s2
    
            U, S, Vt = np.linalg.svd(points1.T * points2)
    
            # The R we seek is in fact the transpose of the one given by U * Vt. This
            # is because the above formulation assumes the matrix goes on the right
            # (with row vectors) where as our solution requires the matrix to be on the
            # left (with column vectors).
            R = (U * Vt).T
    
            return np.vstack([np.hstack(((s2 / s1) * R,
                                         c2.T - (s2 / s1) * R * c1.T)),
                              np.matrix([0., 0., 1.])])
    
        def warp_im(self, im, M, dshape):
            '''
            人脸位置仿射变换
            '''
            output_im = np.zeros(dshape, dtype=im.dtype)
            cv2.warpAffine(im,
                           M[:2],
                           (dshape[1], dshape[0]),
                           dst=output_im,
                           borderMode=cv2.BORDER_TRANSPARENT,
                           flags=cv2.WARP_INVERSE_MAP)
            return output_im
    
        def correct_colours(self, im1, im2, landmarks_head):
            '''
            颜色校正
            '''
            blur_amount = int(self.COLOUR_CORRECT_BLUR_FRAC * np.linalg.norm(
                np.mean(landmarks_head[self.LEFT_EYE_POINTS], axis=0) -
                np.mean(landmarks_head[self.RIGHT_EYE_POINTS], axis=0)))
            if blur_amount % 2 == 0:
                blur_amount += 1
            im1_blur = cv2.GaussianBlur(im1, (blur_amount, blur_amount), 0)
            im2_blur = cv2.GaussianBlur(im2, (blur_amount, blur_amount), 0)
            im2_blur += (128 * (im2_blur <= 1.0)).astype(im2_blur.dtype)
            return im2.astype(np.float64) * im1_blur.astype(np.float64) / im2_blur.astype(np.float64)
    
        def swap(self, head_name, face_path):
            '''
            主函数 人脸交换
            head_name:
                头资源的键名字符串
            face_path:
                脸来源的图像路径名
            '''
            im_head, landmarks_head, im_face, landmarks_face = self.resize(*self.heads[head_name],
                                                                           *self.read_and_mark(face_path))
            M = self.transformation_from_points(landmarks_head[self.ALIGN_POINTS],
                                                landmarks_face[self.ALIGN_POINTS])
    
            face_mask = self.get_face_mask(im_face, landmarks_face)
            warped_mask = self.warp_im(face_mask, M, im_head.shape)
            combined_mask = np.max([self.get_face_mask(im_head, landmarks_head), warped_mask],
                                   axis=0)
    
            warped_face = self.warp_im(im_face, M, im_head.shape)
            warped_corrected_im2 = self.correct_colours(im_head, warped_face, landmarks_head)
    
            out = im_head * (1.0 - combined_mask) + warped_corrected_im2 * combined_mask
            return out
    
        def save(self, output_path, output_im):
            '''
            保存图片
            '''
            cv2.imencode('.jpg', output_im)[1].tofile(output_path)
    
    
    # =============================================================================
    #         cv2.imwrite(os.path.abspath(output_path.encode('utf-8').decode('gbk')), output_im)
    # =============================================================================
    
    if __name__ == '__main__':
        '''
        命令行运行:
        python faceswapper.py <头路径> <脸路径> <输出图片路径>(可选,默认./output.jpg)
        '''
        head, face_path, out = sys.argv[1], sys.argv[2], (sys.argv[3] if len(sys.argv) >= 4 else 'output.jpg')
        swapper = Faceswapper([head])
        output_im = swapper.swap(os.path.split(head)[-1], face_path)  # 返回的numpy数组
        swapper.save(out, output_im)
        output_im[output_im > 254.9] = 254.9
    # cv2.imshow('',output_im.astype('uint8'))
    #  cv2.waitKey()
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235
    • 236
    • 237
    • 238
    • 239
    • 240
    • 241
    • 242
    • 243
    • 244
    • 245
    • 246
    • 247
    • 248
    • 249
    • 250
    • 251
    • 252
    • 253
    • 254
    • 255
    • 256
    • 257
    • 258
    • 259
    • 260
    • 261
    • 262
    • 263
    • 264
    • 265
    • 266
    • 267
    • 268
    • 269
    • 270
    • 271
    • 272
    • 273

    小结

    参考: https://github.com/matthewearl/faceswap
    https://gitee.com/wllsxz/mask-changing/blob/master/faceswapper.py

    安装教程:https://blog.csdn.net/qq_45070929/article/details/118612849

  • 相关阅读:
    flink的regular join/window join/interval join/temporal join/lookup join
    BizWorks 应⽤平台基于 KubeVela 的实践
    PVTV2--Pyramid Vision TransformerV2学习笔记
    ListenableFuture和countdownlatch使用example
    【剑指offer】序列化二叉树
    十、http客户端Feign
    简易介绍如何使用拼多多商品详情 API。
    解决 webpack 4.X:autoprefixer 插件使用不起作用的两种解决方案
    基于 LSTM 的分布式能源发电预测(Matlab代码实现)
    三维模型OBJ格式轻量化的数据压缩与性能平衡分析
  • 原文地址:https://blog.csdn.net/zhanggqianglovec/article/details/128190841