视频学习地址:17-尚硅谷-垂直分库_哔哩哔哩_bilibili
笔记参考地址:MySQL 分库分表 | xustudyxu's Blog (frxcat.fun)
介绍
根据指定的字段及其配置的范围与数据节点的对应情况, 来决定该数据属于哪一个分片。

配置
schema.xml逻辑表配置:
<table name="TB_ORDER" dataNode="dn1,dn2,dn3" rule="auto-sharding-long" />
schema.xml数据节点配置:
- <dataNode name="dn1" dataHost="dhost1" database="db01" />
- <dataNode name="dn2" dataHost="dhost2" database="db01" />
- <dataNode name="dn3" dataHost="dhost3" database="db01" />
rule.xml分片规则配置:
- <tableRule name="auto-sharding-long">
- <rule>
- <columns>idcolumns>
- <algorithm>rang-longalgorithm>
- rule>
- tableRule>
-
- <function name="rang-long" class="io.mycat.route.function.AutoPartitionByLong">
- <property name="mapFile">autopartition-long.txtproperty>
- <property name="defaultNode">0property>
- function>
分片规则配置属性含义:

在rule.xml中配置分片规则时,关联了一个映射配置文件 autopartition-long.txt,该配置文件的配置如下:
- # range start-end ,data node index
- # K=1000,M=10000.
- 0-500M=0
- 500M-1000M=1
- 1000M-1500M=2
含义:0-500万之间的值,存储在0号数据节点(数据节点的索引从0开始) ; 500万-1000万之间的数据存储在1号数据节点 ; 1000万-1500万的数据节点存储在2号节点 ;
该分片规则,主要是针对于数字类型的字段适用。 在MyCat的第一个案例中,我们使用的就是该分片规则。
介绍
根据指定的字段值与节点数量进行求模运算,根据运算结果, 来决定该数据属于哪一个分片。

配置
schema.xml逻辑表配置
<table name="tb_log" dataNode="dn4,dn5,dn6" primaryKey="id" rule="mod-long" />
schema.xml数据节点配置:
- <dataNode name="dn4" dataHost="dhost1" database="itcast" />
- <dataNode name="dn5" dataHost="dhost2" database="itcast" />
- <dataNode name="dn6" dataHost="dhost3" database="itcast" />
rule.xml分片规则配置:
- <tableRule name="mod-long">
- <rule>
- <columns>idcolumns>
- <algorithm>mod-longalgorithm>
- rule>
- tableRule>
-
- <function name="mod-long" class="io.mycat.route.function.PartitionByMod">
- <property name="count">3property>
- function>
分片规则属性说明如下:

该分片规则,主要是针对于数字类型的字段适用。 在前面水平拆分的演示中,我们选择的就是取模分片。
介绍
所谓一致性哈希,相同的哈希因子计算值总是被划分到相同的分区表中,不会因为分区节点的增加而改变原来数据的分区位置,有效的解决了分布式数据的拓容问题。

配置
schema.xml中逻辑表配置:
- <table name="tb_order" dataNode="dn4,dn5,dn6" rule="sharding-by-murmur" />
schema.xml中数据节点配置:
- <dataNode name="dn4" dataHost="dhost1" database="itcast" />
- <dataNode name="dn5" dataHost="dhost2" database="itcast" />
- <dataNode name="dn6" dataHost="dhost3" database="itcast" />
rule.xml中分片规则配置:
注意,这里MyCat已经默认配置好,只需要修改就行,默认function中的节点为2,修改为3
- <tableRule name="sharding-by-murmur">
- <rule>
- <columns>idcolumns>
- <algorithm>murmuralgorithm>
- rule>
- tableRule>
-
- <function name="murmur" class="io.mycat.route.function.PartitionByMurmurHash">
- <property name="seed">0property>
- <property name="count">3property>
- <property name="virtualBucketTimes">160property>
- function>
分片规则属性含义:

测试
配置完毕后,重新启动MyCat,然后在mycat的命令行中,执行如下SQL创建表(需要手动将大写表明改为小写!)、并插入数据,查看数据分布情况。
- create table tb_order(
- id varchar(100) not null primary key,
- money int null,
- content varchar(200) null
- );
- INSERT INTO tb_order (id, money, content) VALUES ('b92fdaaf-6fc4-11ec-b831- 482ae33c4a2d', 10, 'b92fdaf8-6fc4-11ec-b831-482ae33c4a2d');
- INSERT INTO tb_order (id, money, content) VALUES ('b93482b6-6fc4-11ec-b831-482ae33c4a2d', 20, 'b93482d5-6fc4-11ec-b831-482ae33c4a2d');
- INSERT INTO tb_order (id, money, content) VALUES ('b937e246-6fc4-11ec-b831-482ae33c4a2d', 50, 'b937e25d-6fc4-11ec-b831-482ae33c4a2d');
- INSERT INTO tb_order (id, money, content) VALUES ('b93be2dd-6fc4-11ec-b831-482ae33c4a2d', 100, 'b93be2f9-6fc4-11ec-b831-482ae33c4a2d');
- INSERT INTO tb_order (id, money, content) VALUES ('b93f2d68-6fc4-11ec-b831-482ae33c4a2d', 130, 'b93f2d7d-6fc4-11ec-b831-482ae33c4a2d');
- INSERT INTO tb_order (id, money, content) VALUES ('b9451b98-6fc4-11ec-b831-482ae33c4a2d', 30, 'b9451bcc-6fc4-11ec-b831-482ae33c4a2d');
- INSERT INTO tb_order (id, money, content) VALUES ('b9488ec1-6fc4-11ec-b831-482ae33c4a2d', 560, 'b9488edb-6fc4-11ec-b831-482ae33c4a2d');
- INSERT INTO tb_order (id, money, content) VALUES ('b94be6e6-6fc4-11ec-b831-482ae33c4a2d', 10, 'b94be6ff-6fc4-11ec-b831-482ae33c4a2d');
- INSERT INTO tb_order (id, money, content) VALUES ('b94ee10d-6fc4-11ec-b831-482ae33c4a2d', 123, 'b94ee12c-6fc4-11ec-b831-482ae33c4a2d');
- INSERT INTO tb_order (id, money, content) VALUES ('b952492a-6fc4-11ec-b831-482ae33c4a2d', 145, 'b9524945-6fc4-11ec-b831-482ae33c4a2d');
- INSERT INTO tb_order (id, money, content) VALUES ('b95553ac-6fc4-11ec-b831-482ae33c4a2d', 543, 'b95553c8-6fc4-11ec-b831-482ae33c4a2d');
- INSERT INTO tb_order (id, money, content) VALUES ('b9581cdd-6fc4-11ec-b831-482ae33c4a2d', 17, 'b9581cfa-6fc4-11ec-b831-482ae33c4a2d');
- INSERT INTO tb_order (id, money, content) VALUES ('b95afc0f-6fc4-11ec-b831-482ae33c4a2d', 18, 'b95afc2a-6fc4-11ec-b831-482ae33c4a2d');
- INSERT INTO tb_order (id, money, content) VALUES ('b95daa99-6fc4-11ec-b831-482ae33c4a2d', 134, 'b95daab2-6fc4-11ec-b831-482ae33c4a2d');
- INSERT INTO tb_order (id, money, content) VALUES ('b9667e3c-6fc4-11ec-b831-482ae33c4a2d', 156, 'b9667e60-6fc4-11ec-b831-482ae33c4a2d');
- INSERT INTO tb_order (id, money, content) VALUES ('b96ab489-6fc4-11ec-b831-482ae33c4a2d', 175, 'b96ab4a5-6fc4-11ec-b831-482ae33c4a2d');
- INSERT INTO tb_order (id, money, content) VALUES ('b96e2942-6fc4-11ec-b831-482ae33c4a2d', 180, 'b96e295b-6fc4-11ec-b831-482ae33c4a2d');
- INSERT INTO tb_order (id, money, content) VALUES ('b97092ec-6fc4-11ec-b831-482ae33c4a2d', 123, 'b9709306-6fc4-11ec-b831-482ae33c4a2d');
- INSERT INTO tb_order (id, money, content) VALUES ('b973727a-6fc4-11ec-b831-482ae33c4a2d', 230, 'b9737293-6fc4-11ec-b831-482ae33c4a2d');
- INSERT INTO tb_order (id, money, content) VALUES ('b978840f-6fc4-11ec-b831-482ae33c4a2d', 560, 'b978843c-6fc4-11ec-b831-482ae33c4a2d');
结果:

介绍
通过在配置文件中配置可能的枚举值, 指定数据分布到不同数据节点上, 本规则适用于按照省份、性别、状态拆分数据等业务 。

配置
schema.xml中逻辑表配置:
- <table name="tb_user" dataNode="dn4,dn5,dn6" rule="sharding-by-intfile-enumstatus"/>
schema.xml中数据节点配置:
- <dataNode name="dn4" dataHost="dhost1" database="itcast" />
- <dataNode name="dn5" dataHost="dhost2" database="itcast" />
- <dataNode name="dn6" dataHost="dhost3" database="itcast" />
ule.xml中分片规则配置:
- <tableRule name="sharding-by-intfile">
- <rule>
- <columns>sharding_idcolumns>
- <algorithm>hash-intalgorithm>
- rule>
- tableRule>
-
- <tableRule name="sharding-by-intfile-enumstatus">
- <rule>
- <columns>statuscolumns>
- <algorithm>hash-intalgorithm>
- rule>
- tableRule>
-
- <function name="hash-int" class="io.mycat.route.function.PartitionByFileMap">
- <property name="defaultNode">2property>
- <property name="mapFile">partition-hash-int.txtproperty>
- function>
partition-hash-int.txt ,内容如下 :
- 1=0
- 2=1
- 3=2
分片规则属性含义:
测试
配置完毕后,重新启动MyCat,然后在mycat的命令行中,执行如下SQL创建表(修改表名小写)、并插入数据,查看数据分布情况。
- CREATE TABLE tb_user (
- id bigint(20) NOT NULL COMMENT 'ID',
- username varchar(200) DEFAULT NULL COMMENT '姓名',
- status int(2) DEFAULT '1' COMMENT '1: 未启用, 2: 已启用, 3: 已关闭',
- PRIMARY KEY (`id`)
- ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
-
- insert into tb_user (id,username ,status) values(1,'Tom',1);
- insert into tb_user (id,username ,status) values(2,'Cat',2);
- insert into tb_user (id,username ,status) values(3,'Rose',3);
- insert into tb_user (id,username ,status) values(4,'Coco',2);
- insert into tb_user (id,username ,status) values(5,'Lily',1);
- insert into tb_user (id,username ,status) values(6,'Tom',1);
- insert into tb_user (id,username ,status) values(7,'Cat',2);
- insert into tb_user (id,username ,status) values(8,'Rose',3);
- insert into tb_user (id,username ,status) values(9,'Coco',2);
- insert into tb_user (id,username ,status) values(10,'Lily',1);
结果:

介绍
运行阶段由应用自主决定路由到那个分片 , 直接根据**字符子串(必须是数字)**计算分片号。

配置
schema.xml中逻辑表配置:
- <table name="tb_app" dataNode="dn4,dn5,dn6" rule="sharding-by-substring" />
schema.xml中数据节点配置:
- <dataNode name="dn4" dataHost="dhost1" database="itcast" />
- <dataNode name="dn5" dataHost="dhost2" database="itcast" />
- <dataNode name="dn6" dataHost="dhost3" database="itcast" />
rule.xml中分片规则配置:
- <tableRule name="sharding-by-substring">
- <rule>
- <columns>idcolumns>
- <algorithm>sharding-by-substringalgorithm>
- rule>
- tableRule>
- <function name="sharding-by-substring" class="io.mycat.route.function.PartitionDirectBySubString">
- <property name="startIndex">0property>
- <property name="size">2property>
- <property name="partitionCount">3property>
- <property name="defaultPartition">0property>
- function>
分片规则属性含义:

示例说明 :
id=05-100000002 , 在此配置中代表根据id中从 startIndex=0,开始,截取siz=2位数字即05,05就是获取的分区,如果没找到对应的分片则默认分配到defaultPartition 。
测试
配置完毕后,重新启动MyCat,然后在mycat的命令行中,执行如下SQL创建表、并插入数据,查看数据分布情况。
- CREATE TABLE tb_app (
- id varchar(10) NOT NULL COMMENT 'ID',
- name varchar(200) DEFAULT NULL COMMENT '名称',
- PRIMARY KEY (`id`)
- ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
-
- insert into tb_app (id,name) values('0000001','Testx00001');
- insert into tb_app (id,name) values('0100001','Test100001');
- insert into tb_app (id,name) values('0100002','Test200001');
- insert into tb_app (id,name) values('0200001','Test300001');
- insert into tb_app (id,name) values('0200002','TesT400001');
结果:

介绍
该算法类似于十进制的求模运算,但是为二进制的操作,例如,取 id 的二进制低 10 位 与1111111111 进行位 & 运算,位与运算最小值为0000000000,最大值为1111111111,转换为十进制,也就是位于0-1023之间。

特点:
配置
schema.xml中逻辑表配置:
- <table name="tb_longhash" dataNode="dn4,dn5,dn6" rule="sharding-by-long-hash" />
schema.xml中数据节点配置:
- <dataNode name="dn4" dataHost="dhost1" database="itcast" />
- <dataNode name="dn5" dataHost="dhost2" database="itcast" />
- <dataNode name="dn6" dataHost="dhost3" database="itcast" />
rule.xml中分片规则配置:
- <tableRule name="sharding-by-long-hash">
- <rule>
- <columns>idcolumns>
- <algorithm>sharding-by-long-hashalgorithm>
- rule>
- tableRule>
-
- <function name="sharding-by-long-hash" class="io.mycat.route.function.PartitionByLong">
- <property name="partitionCount">2,1property>
- <property name="partitionLength">256,512property>
- function>
分片规则属性含义:

约束 :
以上分为三个分区:0-255,256-511,512-1023
示例说明 :

测试
配置完毕后,重新启动MyCat,然后在mycat的命令行中,执行如下SQL创建表(改小写)、并插入数据,查看数据分布情况。
- CREATE TABLE tb_longhash (
- id int(11) NOT NULL COMMENT 'ID',
- name varchar(200) DEFAULT NULL COMMENT '名称',
- firstChar char(1) COMMENT '首字母',
- PRIMARY KEY (`id`)
- ) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
-
- insert into tb_longhash (id,name,firstChar) values(1,'七匹狼','Q');
- insert into tb_longhash (id,name,firstChar) values(2,'八匹狼','B');
- insert into tb_longhash (id,name,firstChar) values(3,'九匹狼','J');
- insert into tb_longhash (id,name,firstChar) values(4,'十匹狼','S');
- insert into tb_longhash (id,name,firstChar) values(5,'六匹狼','L');
- insert into tb_longhash (id,name,firstChar) values(6,'五匹狼','W');
- insert into tb_longhash (id,name,firstChar) values(7,'四匹狼','S');
- insert into tb_longhash (id,name,firstChar) values(8,'三匹狼','S');
- insert into tb_longhash (id,name,firstChar) values(260,'两匹狼','L');
结果:

介绍
截取字符串中的指定位置的子字符串, 进行hash算法, 算出分片。

配置
schema.xml中逻辑表配置:
- <table name="tb_strhash" dataNode="dn4,dn5" rule="sharding-by-stringhash" />
schema.xml中数据节点配置:
- <dataNode name="dn4" dataHost="dhost1" database="itcast" />
- <dataNode name="dn5" dataHost="dhost2" database="itcast" />
rule.xml中分片规则配置:
- <tableRule name="sharding-by-stringhash">
- <rule>
- <columns>namecolumns>
- <algorithm>sharding-by-stringhashalgorithm>
- rule>
- tableRule>
-
- <function name="sharding-by-stringhash" class="io.mycat.route.function.PartitionByString">
- <property name="partitionLength">512property>
- <property name="partitionCount">2property>
- <property name="hashSlice">0:2property>
- function>
分片规则属性含义:

示例说明:

测试
配置完毕后,重新启动MyCat,然后在mycat的命令行中,执行如下SQL创建表、并插入数据,查看数据分布情况。
- create table tb_strhash(
- name varchar(20) primary key,
- content varchar(100)
- )engine=InnoDB DEFAULT CHARSET=utf8mb4;
-
- INSERT INTO tb_strhash (name,content) VALUES('T1001', UUID());
- INSERT INTO tb_strhash (name,content) VALUES('ROSE', UUID());
- INSERT INTO tb_strhash (name,content) VALUES('JERRY', UUID());
- INSERT INTO tb_strhash (name,content) VALUES('CRISTINA', UUID());
- INSERT INTO tb_strhash (name,content) VALUES('TOMCAT', UUID());
介绍
按照日期及对应的时间周期来分片。

配置
schema.xml中逻辑表配置
- <table name="tb_datepart" dataNode="dn4,dn5,dn6" rule="sharding-by-date" />
schema.xml中数据节点配置:
- <dataNode name="dn4" dataHost="dhost1" database="itcast" />
- <dataNode name="dn5" dataHost="dhost2" database="itcast" />
- <dataNode name="dn6" dataHost="dhost3" database="itcast" />
rule.xml中分片规则配置
- <tableRule name="sharding-by-date">
- <rule>
- <columns>create_timecolumns>
- <algorithm>sharding-by-datealgorithm>
- rule>
- tableRule>
-
- <function name="sharding-by-date" class="io.mycat.route.function.PartitionByDate">
- <property name="dateFormat">yyyy-MM-ddproperty>
- <property name="sBeginDate">2022-01-01property>
- <property name="sEndDate">2022-01-30property>
- <property name="sPartionDay">10property>
- function>
分片规则属性含义:
测试
配置完毕后,重新启动MyCat,然后在mycat的命令行中,执行如下SQL创建表、并插入数据,查看数据分布情况。
- create table tb_datepart(
- id bigint not null comment 'ID' primary key,
- name varchar(100) null comment '姓名',
- create_time date null
- );
-
- insert into tb_datepart(id,name ,create_time) values(1,'Tom','2022-01-01');
- insert into tb_datepart(id,name ,create_time) values(2,'Cat','2022-01-10');
- insert into tb_datepart(id,name ,create_time) values(3,'Rose','2022-01-11');
- insert into tb_datepart(id,name ,create_time) values(4,'Coco','2022-01-20');
- insert into tb_datepart(id,name ,create_time) values(5,'Rose2','2022-01-21');
- insert into tb_datepart(id,name ,create_time) values(6,'Coco2','2022-01-30');
- insert into tb_datepart(id,name ,create_time) values(7,'Coco3','2022-01-31');
介绍
使用场景为按照月份来分片, 每个自然月为一个分片。

配置
schema.xml中逻辑表配置:
- <table name="tb_monthpart" dataNode="dn4,dn5,dn6" rule="sharding-by-month" />
schema.xml中数据节点配置:
- <dataNode name="dn4" dataHost="dhost1" database="itcast" />
- <dataNode name="dn5" dataHost="dhost2" database="itcast" />
- <dataNode name="dn6" dataHost="dhost3" database="itcast" />
rule.xml中分片规则配置:
- <tableRule name="sharding-by-month">
- <rule>
- <columns>create_timecolumns>
- <algorithm>partbymonthalgorithm>
- rule>
- tableRule>
- <function name="partbymonth" class="io.mycat.route.function.PartitionByMonth">
- <property name="dateFormat">yyyy-MM-ddproperty>
- <property name="sBeginDate">2022-01-01property>
- <property name="sEndDate">2022-03-31property>
- function>
分片规则属性含义:

测试
配置完毕后,重新启动MyCat,然后在mycat的命令行中,执行如下SQL创建表、并插入数据,查看数据分布情况。
- create table tb_monthpart(
- id bigint not null comment 'ID' primary key,
- name varchar(100) null comment '姓名',
- create_time date null
- );
-
- insert into tb_monthpart(id,name ,create_time) values(1,'Tom','2022-01-01');
- insert into tb_monthpart(id,name ,create_time) values(2,'Cat','2022-01-10');
- insert into tb_monthpart(id,name ,create_time) values(3,'Rose','2022-01-31');
- insert into tb_monthpart(id,name ,create_time) values(4,'Coco','2022-02-20');
- insert into tb_monthpart(id,name ,create_time) values(5,'Rose2','2022-02-25');
- insert into tb_monthpart(id,name ,create_time) values(6,'Coco2','2022-03-10');
- insert into tb_monthpart(id,name ,create_time) values(7,'Coco3','2022-03-31');
- insert into tb_monthpart(id,name ,create_time) values(8,'Coco4','2022-04-10');
- insert into tb_monthpart(id,name ,create_time) values(9,'Coco5','2022-04-30');