这是一套完整的学习过程,从发布图片,点云到发布gps,imu,并实现他们的可视化
具体的学习链接如下,是对学习的记录,方便自己回顾,同时也希望帮到需要帮助的人。
系列1:Ubuntu1804里进行KITTI数据集可视化操作_FYY2LHH的博客-CSDN博客
系列2:自己编写程序publish出kitti数据集,可视化kitti数据集_FYY2LHH的博客-CSDN博客
系列3:ubuntu1804自己编写程序发布kitti数据集的点云数据_FYY2LHH的博客-CSDN博客
系列4:在rviz中利用KITTI数据集画出自己的车子以及照相机的视野_FYY2LHH的博客-CSDN博客
本章节记录内容为发布imu并实现可视化,发布gps,并查看话题发布类型
1、仍然是三个py文件,第一个publish
- #!/usr/bin/env python
- import rospy
- from std_msgs.msg import Header
- from visualization_msgs.msg import Marker,MarkerArray
- from sensor_msgs.msg import Image, PointCloud2, Imu, NavSatFix
- from geometry_msgs.msg import Point
- import sensor_msgs.point_cloud2 as pcl2
- from cv_bridge import CvBridge
- import tf
- import numpy as np
- FRAME_ID = 'map'
-
- def publish_camera(cam_pub, bridge, image):
- cam_pub.publish(bridge.cv2_to_imgmsg(image,"bgr8"))
-
- def publish_point_cloud(pcl_pub,point_cloud):
- header = Header()
- header.stamp = rospy.Time.now()
- header.frame_id = FRAME_ID
- pcl_pub.publish(pcl2.create_cloud_xyz32(header, point_cloud[:,:3]))
-
- def publish_ego_car(ego_car_pub):
- # publish left and right 45 degree FOV lines and ego car model mesh
- marker_array = MarkerArray()
-
- marker = Marker()
- marker.header.frame_id = FRAME_ID
- marker.header.stamp = rospy.Time.now()
-
- marker.id = 0
- marker.action = Marker.ADD
- marker.lifetime = rospy.Duration()
- marker.type = Marker.LINE_STRIP
- # line
- marker.color.r = 0.0
- marker.color.g = 1.0
- marker.color.b = 0.0
- marker.color.a = 1.0
- marker.scale.x = 0.2 # line width
-
- marker.points = []
-
- # check the kitti axis model
- marker.points.append(Point(5,-5,0)) # left up
- marker.points.append(Point(0,0,0)) # center
- marker.points.append(Point(5, 5,0)) # right up
-
- marker_array.markers.append(marker111)
-
- ego_car_pub.publish(marker)
-
- def publish_car_model(model_pub):
-
- mesh_marker = Marker()
- mesh_marker.header.frame_id = FRAME_ID
- mesh_marker.header.stamp = rospy.Time.now()
-
- mesh_marker.id = -1
- mesh_marker.lifetime = rospy.Duration()
- mesh_marker.type = Marker.MESH_RESOURCE
- mesh_marker.mesh_resource = "/root/catkin_ws/src/kitti_tutorial/AudiR8.dae" #LOAD ERROR, DON'T KNOW WHY
- mesh_marker.pose.position.x = 0.0
- mesh_marker.pose.position.y = 0.0
- mesh_marker.pose.position.z = -1.73
- q = tf.transformations.quaternion_from_euler(np.pi/2,0,np.pi)
- mesh_marker.pose.orientation.x = q[0]
- mesh_marker.pose.orientation.y = q[1]
- mesh_marker.pose.orientation.z = q[2]
- mesh_marker.pose.orientation.w = q[3]
- mesh_marker.color.r = 1.0
- mesh_marker.color.g = 1.0
- mesh_marker.color.b = 1.0
- mesh_marker.color.a = 1.0
- mesh_marker.scale.x = 0.9
- mesh_marker.scale.y = 0.9
- mesh_marker.scale.z = 0.9
- model_pub.publish(mesh_marker)
- def publish_imu(imu_pub, imu_data, log=False):
- """
- Publish IMU data
- http://docs.ros.org/melodic/api/sensor_msgs/html/msg/Imu.html
- """
- imu = Imu()
- imu.header.frame_id = FRAME_ID
- imu.header.stamp = rospy.Time.now()
- q = tf.transformations.quaternion_from_euler(float(imu_data.roll), float(imu_data.pitch), \
- float(imu_data.yaw)) # prevent the data from being overwritten
- imu.orientation.x = q[0]
- imu.orientation.y = q[1]
- imu.orientation.z = q[2]
- imu.orientation.w = q[3]
- imu.linear_acceleration.x = imu_data.af
- imu.linear_acceleration.y = imu_data.al
- imu.linear_acceleration.z = imu_data.au
- imu.angular_velocity.x = imu_data.wf
- imu.angular_velocity.y = imu_data.wl
- imu.angular_velocity.z = imu_data.wu
- imu_pub.publish(imu)
- if log:
- rospy.loginfo("imu msg published")
- def publish_gps(gps_pub, gps_data, log=False):
- """
- Publish GPS data
- """
- gps = NavSatFix()
- gps.header.frame_id = FRAME_ID
- gps.header.stamp = rospy.Time.now()
- gps.latitude = gps_data.lat
- gps.longitude = gps_data.lon
- gps.altitude = gps_data.alt
- gps_pub.publish(gps)
- if log:
- rospy.loginfo("gps msg published")
2、data_utils.py
- #!/usr/bin/env python
- import cv2
- import numpy as np
- import pandas as pd
-
-
- IMU_COLUMN_NAMES = ['lat', 'lon', 'alt', 'roll', 'pitch', 'yaw', 'vn', 've', 'vf', 'vl', 'vu', 'ax', 'ay', 'az', 'af','al', 'au', 'wx', 'wy', 'wz', 'wf', 'wl', 'wu', 'posacc', 'velacc', 'navstat', 'numsats', 'posmode','velmode', 'orimode']
-
- def read_camera(path):
- return cv2.imread(path)
-
- def read_point_cloud(path):
- return np.fromfile(path,dtype=np.float32).reshape(-1, 4)
-
- def read_imu(path):
- df = pd.read_csv(path, header=None, sep=' ')
- df.columns = IMU_COLUMN_NAMES
- return df
3、kitti.py
- #!/usr/bin/env python
- from data_utils import *
- from publish_utils import *
- import os
-
- DATA_PATH = '/home/ros/dianyun/2011_09_26_drive_0005_sync/2011_09_26/2011_09_26_drive_0005_sync/'
-
- if __name__ == "__main__":
- frame = 0
- rospy.init_node('kitti_node',anonymous=True)
- cam_pub = rospy.Publisher('kitti_cam', Image, queue_size=10)
- pcl_pub = rospy.Publisher('kitti_point_cloud', PointCloud2, queue_size=10)
- bridge = CvBridge()
- ego_pub = rospy.Publisher('kitti_ego_car',Marker, queue_size=10)
- # model_car_pub = rospy.Publisher('kitti_model_car',Marker, queue_size=10)
-
- imu_pub = rospy.Publisher('kitti_imu',Imu, queue_size=10)
- gps_pub = rospy.Publisher('kitti_gps',NavSatFix, queue_size=10)
- rate = rospy.Rate(10)
-
- while not rospy.is_shutdown():
- image = read_camera(os.path.join(DATA_PATH, 'image_02/data/%010d.png'%frame))
- point_cloud = read_point_cloud(os.path.join(DATA_PATH, 'velodyne_points/data/%010d.bin'%frame))
- imu_data = read_imu(os.path.join(DATA_PATH,'oxts/data/%010d.txt'%frame))
- publish_camera(cam_pub, bridge, image)
- publish_point_cloud(pcl_pub, point_cloud)
- publish_ego_car(ego_pub)
- # publish_car_model(model_car_pub)
- publish_imu(imu_pub, imu_data )
- publish_gps(gps_pub, imu_data ) #gps rviz cannot visulize, only use rostopic echo
- rospy.loginfo("kitti published")
- rate.sleep()
- frame += 1
- frame %= 154
三个文件的路径还是原来的的路径
4、在rviz中添加imu的话题

紫色的长度代表速度,偏向代表方向
5、查看gps的话题
新开一个终端

第一行rostopic list查看发布哪些话题
第二行rostopic info /kitti_gps查看gps的话题类型
第三行rostopic echo /kitti_gps查看gps发布的具体话题的详细细信息