• pytorch 学习第三天 交叉熵


    交叉熵

    信息量

    假设X是一个离散型随机变量,其取值集合为X,概率分布函数为p(x)=Pr(X=x),x∈X 我们定义事件X=x0的信息量为:I(x0)=−log(p(x0)),可以理解为,一个事件发生的概率越大,则它所携带的信息量就越小,而当p(x0)=1时,熵将等于0,也就是说该事件的发生不会导致任何信息量的增加。举个例子,小明平时不爱学习,考试经常不及格,而小王是个勤奋学习的好学生,经常得满分,所以我们可以做如下假设:
    事件A:小明考试及格,对应的概率P(xA)=0.1,信息量为I(xA)=−log(0.1)=3.3219
    事件B:小王考试及格,对应的概率P(xB)=0.999,信息量为I(xB)=−log(0.999)=0.0014

    可以看出,结果非常符合直观:小明及格的可能性很低(十次考试只有一次及格),因此如果某次考试及格了(大家都会说:X竟然及格了!),必然会引入较大的信息量,对应的II值也较高。而对于小王而言,考试及格是大概率事件,在事件B发生前,大家普遍认为事件B的发生几乎是确定的,因此当某次考试小王及格这个事件发生时并不会引入太多的信息量,相应的II值也非常的低。

    什么是熵

    那么什么又是熵呢?还是通过上边的例子来说明,假设小明的考试结果是一个0-1分布XA只有两个取值{0:不及格,1:及格},在某次考试结果公布前,小明的考试结果有多大的不确定度呢?你肯定会说:十有八九不及格!因为根据先验知识,小明及格的概率仅有0.1,90%的可能都是不及格的。怎么来度量这个不确定度?求期望!不错,我们对所有可能结果带来的额外信息量求取均值(期望),其结果不就能够衡量出小明考试成绩的不确定度了吗。
    即:

    HA(x)=−[p(xA)log(p(xA))+(1−p(xA))log(1−p(xA))]=0.4690
    
    • 1

    对应小王的熵:

    HB(x)=−[p(xB)log(p(xB))+(1−p(xB))log(1−p(xB))]=0.0114
    
    • 1

    虽然小明考试结果的不确定性较低,毕竟十次有9次都不及格,但是也比不上小王(1000次考试只有一次才可能不及格,结果相当的确定)
    我们再假设一个成绩相对普通的学生小东,他及格的概率是P(xC)=0.5 ,即及格与否的概率是一样的,对应的熵:HC(x)=−[p(xC)log(p(xC))+(1−p(xC))log(1−p(xC))]=1
    其熵为1,他的不确定性比前边两位同学要高很多,在成绩公布之前,很难准确猜测出他的考试结果。
    可以看出,熵其实是信息量的期望值,它是一个随机变量的确定性的度量。熵越大,变量的取值越不确定,反之就越确定。

    对于一个随机变量X而言,它的所有可能取值的信息量的期望(E[I(x)])就称为熵。
    X的熵定义为:H(X)=Eplog1p(x)=−∑x∈Xp(x)logp(x)
    如果p(x)p(x)是连续型随机变量的pdf,则熵定义为:

    H(X)=−∫x∈Xp(x)logp(x)dx
    
    • 1

    为了保证有效性,这里约定当p(x)→0时,有p(x)logp(x)→0
    当X为0-1分布时,熵与概率p的关系如下图
    在这里插入图片描述

    可以看出,当两种取值的可能性相等时,不确定度最大(此时没有任何先验知识),这个结论可以推广到多种取值的情况。在图中也可以看出,当p=0或1时,熵为0,即此时X完全确定。
    熵的单位随着公式中log运算的底数而变化,当底数为2时,单位为“比特”(bit),底数为e时,单位为“奈特”。

    什么是相对熵

    相对熵(relative entropy)又称为KL散度(Kullback-Leibler divergence),KL距离,是两个随机分布间距离的度量。记为DKL(p||q)。它度量当真实分布为p时,假设分布q的无效性。


    显然,当p=q时,两者之间的相对熵DKL(p||q)=0
    上式最后的Hp(q)表示在p分布下,使用q进行编码需要的bit数,而H§表示对真实分布p所需要的最小编码bit数。基于此,相对熵的意义就很明确了:DKL(p||q)表示在真实分布为p的前提下,使用q分布进行编码相对于使用真实分布p进行编码(即最优编码)所多出来的bit数。

    1. 什么是交叉熵?
      交叉熵容易跟相对熵搞混,二者联系紧密,但又有所区别。假设有两个分布p,qp,q,则它们在给定样本集上的交叉熵定义如下:
    CEH(p,q)=Ep[−logq]=−∑x∈Xp(x)logq(x)=H(p)+DKL(p||q)
    
    • 1

    可以看出,交叉熵与上一节定义的相对熵仅相差了H( p),当p已知时,可以把H§看做一个常数,此时交叉熵与KL距离在行为上是等价的,都反映了分布p,q的相似程度。最小化交叉熵等于最小化KL距离。它们都将在p=q时取得最小值H§(p=q时KL距离为0),因此有的工程文献中将最小化KL距离的方法称为Principle of Minimum Cross-Entropy (MCE)或Minxent方法。
    特别的,在logistic regression中,
    p:真实样本分布,服从参数为p的0-1分布,即X∼B(1,p)
    q:待估计的模型,服从参数为q的0-1分布,即X∼B(1,q)

    x = torch.randn(1,784)
    w = torch.randn(784,10)
    
    y = x@w
    pre = torch.softmax(y,dim=1)
    exp = torch.log(pre)
    print(exp)
    print(F.cross_entropy(y,torch.tensor([3])))
    F.nll_loss(exp,torch.tensor([3]))
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
  • 相关阅读:
    java计算机毕业设计ssm高校工资管理系统
    无法对wsl-docker-data本身的unbutu镜像扩容操作
    Dockerfile使用介绍(入门教程)
    顺丰快递:请签收MySQL灵魂十连
    贪心一【深基12.例1】部分背包问题详解
    一个单例模式,没必要这么卷吧
    [OS-Linux] 创建新用户以及 使用私钥登录Linux
    PyTorch实现DCGAN(生成对抗网络)生成新的假名人照片实战(附源码和数据集)
    荧光染料AF430 tetrazine,AF430 四嗪,深橙色固体
    我想说说长短链接
  • 原文地址:https://blog.csdn.net/qq_29983883/article/details/128169735