• List of triangle inequalities


    In geometry, triangle inequalities are inequalities involving the parameters of triangles, that hold for every triangle, or for every triangle meeting certain conditions. The inequalities give an ordering of two different values: they are of the form “less than”, “less than or equal to”, “greater than”, or “greater than or equal to”. The parameters in a triangle inequality can be the side lengths, the semiperimeter, the angle measures, the values of trigonometric functions of those angles, the area of the triangle, the medians of the sides, the altitudes, the lengths of the internal angle bisectors from each angle to the opposite side, the perpendicular bisectors of the sides, the distance from an arbitrary point to another point, the inradius, the exradii, the circumradius, and/or other quantities.

    Unless otherwise specified, this article deals with triangles in the Euclidean plane.

    1 Main parameters and notation

    The parameters most commonly appearing in triangle inequalities are:

    the side lengths a, b, and c;
    the semiperimeter s = (a + b + c) / 2 (half the perimeter p);
    the angle measures A, B, and C of the angles of the vertices opposite the respective sides a, b, and c (with the vertices denoted with the same symbols as their angle measures);
    the values of trigonometric functions of the angles;
    the area T of the triangle;
    the medians ma, mb, and mc of the sides (each being the length of the line segment from the midpoint of the side to the opposite vertex);
    the altitudes ha, hb, and hc (each being the length of a segment perpendicular to one side and reaching from that side (or possibly the extension of that side) to the opposite vertex);
    the lengths of the internal angle bisectors ta, tb, and tc (each being a segment from a vertex to the opposite side and bisecting the vertex’s angle);
    the perpendicular bisectors pa, pb, and pc of the sides (each being the length of a segment perpendicular to one side at its midpoint and reaching to one of the other sides);
    the lengths of line segments with an endpoint at an arbitrary point P in the plane (for example, the length of the segment from P to vertex A is denoted PA or AP);
    the inradius r (radius of the circle inscribed in the triangle, tangent to all three sides), the exradii ra, rb, and rc (each being the radius of an excircle tangent to side a, b, or c respectively and tangent to the extensions of the other two sides), and the circumradius R (radius of the circle circumscribed around the triangle and passing through all three vertices).

    2 Side lengths

    The basic triangle inequality is

    {\displaystyle a or equivalently
    {\displaystyle \max(a,b,c) In addition,

    {\displaystyle {\frac {3}{2}}\leq {\frac {a}{b+c}}+{\frac {b}{a+c}}+{\frac {c}{a+b}}<2,}{\displaystyle {\frac {3}{2}}\leq {\frac {a}{b+c}}+{\frac {b}{a+c}}+{\frac {c}{a+b}}<2,}
    where the value of the right side is the lowest possible bound,[1]: p. 259  approached asymptotically as certain classes of triangles approach the degenerate case of zero area. The left inequality, which holds for all positive a, b, c, is Nesbitt’s inequality.
    We have

    {\displaystyle 3\left({\frac {a}{b}}+{\frac {b}{c}}+{\frac {c}{a}}\right)\geq 2\left({\frac {b}{a}}+{\frac {c}{b}}+{\frac {a}{c}}\right)+3.}3\left({\frac {a}{b}}+{\frac {b}{c}}+{\frac {c}{a}}\right)\geq 2\left({\frac {b}{a}}+{\frac {c}{b}}+{\frac {a}{c}}\right)+3.[2]: p.250, #82 
    {\displaystyle abc\geq (a+b-c)(a-b+c)(-a+b+c).\quad }abc\geq (a+b-c)(a-b+c)(-a+b+c).\quad [1]: p. 260 
    {\displaystyle {\frac {1}{3}}\leq {\frac {a{2}+b{2}+c{2}}{(a+b+c){2}}}<{\frac {1}{2}}.\quad }{\displaystyle {\frac {1}{3}}\leq {\frac {a{2}+b{2}+c{2}}{(a+b+c){2}}}<{\frac {1}{2}}.\quad }[1]: p. 261 
    {\displaystyle {\sqrt {a+b-c}}+{\sqrt {a-b+c}}+{\sqrt {-a+b+c}}\leq {\sqrt {a}}+{\sqrt {b}}+{\sqrt {c}}.}\sqrt{a+b-c} + \sqrt{a-b+c} + \sqrt{-a+b+c} \leq \sqrt{a}+\sqrt{b} + \sqrt{c}.[1]: p. 261 
    {\displaystyle a{2}b(a-b)+b{2}c(b-c)+c^{2}a(c-a)\geq 0.}a{2}b(a-b)+b{2}c(b-c)+c^{2}a(c-a)\geq 0.[1]: p. 261 
    If angle C is obtuse (greater than 90°) then

    {\displaystyle a{2}+b{2}{2};}a{2}+b{2}{2};
    if C is acute (less than 90°) then

    {\displaystyle a{2}+b{2}>c{2}.}a{2}+b{2}>c{2}.
    The in-between case of equality when C is a right angle is the Pythagorean theorem.

    In general,[2]: p.1, #74

    {\displaystyle a{2}+b{2}>{\frac {c{2}}{2}},}a{2}+b^{2}>{\frac {c^{2}}{2}},
    with equality approached in the limit only as the apex angle of an isosceles triangle approaches 180°.

    If the centroid of the triangle is inside the triangle’s incircle, then[3]: p. 153

    {\displaystyle a^{2}<4bc,\quad b^{2}<4ac,\quad c{2}<4ab.}a{2}<4bc,\quad b^{2}<4ac,\quad c^{2}<4ab.
    While all of the above inequalities are true because a, b, and c must follow the basic triangle inequality that the longest side is less than half the perimeter, the following relations hold for all positive a, b, and c:[1]: p.267

    {\displaystyle {\frac {3abc}{ab+bc+ca}}\leq {\sqrt[{3}]{abc}}\leq {\frac {a+b+c}{3}},}{\frac {3abc}{ab+bc+ca}}\leq {\sqrt[ {3}]{abc}}\leq {\frac {a+b+c}{3}},
    each holding with equality only when a = b = c. This says that in the non-equilateral case the harmonic mean of the sides is less than their geometric mean which in turn is less than their arithmetic mean.

    3 Angles

    4 Area

    5 Medians and centroid

    6 Altitudes

    7 Internal angle bisectors and incenter

    8 Perpendicular bisectors of sides

    9 Segments from an arbitrary point

    9.1 Interior point

    9.2 Interior or exterior point

    10 Inradius, exradii, and circumradius

    10.1 Inradius and circumradius

    10.2 Circumradius and other lengths

    10.3 Inradius, exradii, and other lengths

    11 Inscribed figures

    11.1 Inscribed hexagon

    11.2 Inscribed triangle

    11.3 Inscribed squares

    12 Euler line

    13 Right triangle

    14 Isosceles triangle

    15 Equilateral triangle

    16 Two triangles

    17 Non-Euclidean triangles

    18 See also

  • 相关阅读:
    OA协同系统适合哪些企业
    uniapp开发小程序-pc端小程序下载文件
    前后端交互常见的几种数据传输格式 form表单+get请求 form表单+post请求 json键值对格式
    这样优化Spring Boot,启动速度快到飞起!
    【算法训练-字符串 三】最长公共子串、最长公共子序列
    web自动化测试为什么运行错误
    外包干了3个月,技术退步明显。。。。。
    匿名用户上传的Mybatis学习笔记,炸来了阿里P8,网上一片好评
    【TensorRT】神经网络中的量化
    英飞凌TLF35584规格书中文
  • 原文地址:https://blog.csdn.net/qq_66485519/article/details/128151056