• darknet框架GPU编译安装


    Darknet: Open Source Neural Networks in C

    1、darknet下载
    git clone https://github.com/pjreddie/darknet.git
    cd darknet
    
    • 1
    • 2

    设置makefile

    gpu=1 
    cudnn=1 
    opencv=1
    
    • 1
    • 2
    • 3

    【1】GPU=1;需要设置显卡驱动、cuda

    • 使用nvidia-smi 查看显卡型号和支持的cuda版本号

    在这里插入图片描述

    在这里插入图片描述

    安装cuda若提示

    Existing package manager installation of the driver found. It is strongly recommended that you remove this before continuing
    
    
    • 1
    • 2

    原因是驱动重复安装,卸载掉其他驱动

    dpkg -l | grep Nvidia //查看驱动
    sudo apt-get purge "nvidia*"  //卸载旧版本驱动
    
    • 1
    • 2

    然后再次安装就正常了。成功之后显示

    ===========
    = Summary =
    ===========
    
    Driver:   Not Selected
    Toolkit:  Installed in /usr/local/cuda-11.6/
    
    Please make sure that
     -   PATH includes /usr/local/cuda-11.6/bin
     -   LD_LIBRARY_PATH includes /usr/local/cuda-11.6/lib64, or, add /usr/local/cuda-11.6/lib64 to /etc/ld.so.conf and run ldconfig as root
    
    To uninstall the CUDA Toolkit, run cuda-uninstaller in /usr/local/cuda-11.6/bin
    ***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 510.00 is required for CUDA 11.6 functionality to work.
    To install the driver using this installer, run the following command, replacing <CudaInstaller> with the name of this run file:
        sudo <CudaInstaller>.run --silent --driver
    
    Logfile is /var/log/cuda-installer.log
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17

    添加cuda到系统路径,vim ~/.zshrv

    export PATH=/usr/local/cuda-11.6/bin${PATH:+:${PATH}}
    export LD_LIBRARY_PATH=/usr/local/cuda-11.6/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
    
    • 1
    • 2

    运行source ~/.zshrc 让路径生效,此时可以输入命令nvcc -V验证一下cuda

    nvcc: NVIDIA (R) Cuda compiler driver
    Copyright (c) 2005-2022 NVIDIA Corporation
    Built on Thu_Feb_10_18:23:41_PST_2022
    Cuda compilation tools, release 11.6, V11.6.112
    Build cuda_11.6.r11.6/compiler.30978841_0
    
    • 1
    • 2
    • 3
    • 4
    • 5

    【2】cudnn=1

    • nvidia官网选择相应版本的cudnn,进行下载(建议下载可解压版本的,方便自己操作)
      在这里插入图片描述

    将解压出来的cudnn文件copy到cuda路径中(usl/local中会有两个cuda路径,一个带版本号,一个不带,记得是copy到不带版本号的cuda路径中)

    sudo cp include/cudnn*.h /usr/local/cuda/include
    sudo cp lib/libcudnn* /usr/local/cuda/lib64
    sudo chmod a+r /usr/local/cuda/include/cudnn*.h /usr/local/cuda/lib64/libcudnn*
    
    • 1
    • 2
    • 3

    copy完成之后用cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2 验证一下

    #define CUDNN_MAJOR 8
    #define CUDNN_MINOR 7
    #define CUDNN_PATCHLEVEL 0
    --
    #define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    2、darknet编译

    由于版本问题,需要先修改几个文件

    • https://github.com/arnoldfychen/darknet/blob/master/src/convolutional_layer.c 直接替换darknet/src/convolutional_laye.c文件,老版本不支持cudnn8以上的
    #include "convolutional_layer.h"
    #include "utils.h"
    #include "batchnorm_layer.h"
    #include "im2col.h"
    #include "col2im.h"
    #include "blas.h"
    #include "gemm.h"
    #include 
    #include 
    
    #define PRINT_CUDNN_ALGO 0
    #define MEMORY_LIMIT 2000000000
    
    #ifdef AI2
    #include "xnor_layer.h"
    #endif
    
    void swap_binary(convolutional_layer *l)
    {
        float *swap = l->weights;
        l->weights = l->binary_weights;
        l->binary_weights = swap;
    
    #ifdef GPU
        swap = l->weights_gpu;
        l->weights_gpu = l->binary_weights_gpu;
        l->binary_weights_gpu = swap;
    #endif
    }
    
    void binarize_weights(float *weights, int n, int size, float *binary)
    {
        int i, f;
        for(f = 0; f < n; ++f){
            float mean = 0;
            for(i = 0; i < size; ++i){
                mean += fabs(weights[f*size + i]);
            }
            mean = mean / size;
            for(i = 0; i < size; ++i){
                binary[f*size + i] = (weights[f*size + i] > 0) ? mean : -mean;
            }
        }
    }
    
    void binarize_cpu(float *input, int n, float *binary)
    {
        int i;
        for(i = 0; i < n; ++i){
            binary[i] = (input[i] > 0) ? 1 : -1;
        }
    }
    
    void binarize_input(float *input, int n, int size, float *binary)
    {
        int i, s;
        for(s = 0; s < size; ++s){
            float mean = 0;
            for(i = 0; i < n; ++i){
                mean += fabs(input[i*size + s]);
            }
            mean = mean / n;
            for(i = 0; i < n; ++i){
                binary[i*size + s] = (input[i*size + s] > 0) ? mean : -mean;
            }
        }
    }
    
    int convolutional_out_height(convolutional_layer l)
    {
        return (l.h + 2*l.pad - l.size) / l.stride + 1;
    }
    
    int convolutional_out_width(convolutional_layer l)
    {
        return (l.w + 2*l.pad - l.size) / l.stride + 1;
    }
    
    image get_convolutional_image(convolutional_layer l)
    {
        return float_to_image(l.out_w,l.out_h,l.out_c,l.output);
    }
    
    image get_convolutional_delta(convolutional_layer l)
    {
        return float_to_image(l.out_w,l.out_h,l.out_c,l.delta);
    }
    
    static size_t get_workspace_size(layer l){
    #ifdef CUDNN
        if(gpu_index >= 0){
            size_t most = 0;
            size_t s = 0;
            cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(),
                    l.srcTensorDesc,
                    l.weightDesc,
                    l.convDesc,
                    l.dstTensorDesc,
                    l.fw_algo,
                    &s);
            if (s > most) most = s;
            cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnn_handle(),
                    l.srcTensorDesc,
                    l.ddstTensorDesc,
                    l.convDesc,
                    l.dweightDesc,
                    l.bf_algo,
                    &s);
            if (s > most) most = s;
            cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle(),
                    l.weightDesc,
                    l.ddstTensorDesc,
                    l.convDesc,
                    l.dsrcTensorDesc,
                    l.bd_algo,
                    &s);
            if (s > most) most = s;
            return most;
        }
    #endif
        return (size_t)l.out_h*l.out_w*l.size*l.size*l.c/l.groups*sizeof(float);
    }
    
    #ifdef GPU
    #ifdef CUDNN
    void cudnn_convolutional_setup(layer *l)
    {
        cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w); 
        cudnnSetTensor4dDescriptor(l->ddstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w); 
    
        cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->c, l->h, l->w); 
        cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w); 
        cudnnSetTensor4dDescriptor(l->normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, 1, 1); 
    
        cudnnSetFilter4dDescriptor(l->dweightDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c/l->groups, l->size, l->size); 
        cudnnSetFilter4dDescriptor(l->weightDesc, CUDNN_DATA_FLOAT, CUDNN_TENSOR_NCHW, l->n, l->c/l->groups, l->size, l->size); 
        #if CUDNN_MAJOR >= 6
        cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT);
        #else
        cudnnSetConvolution2dDescriptor(l->convDesc, l->pad, l->pad, l->stride, l->stride, 1, 1, CUDNN_CROSS_CORRELATION);
        #endif
    
        #if CUDNN_MAJOR >= 7
        cudnnSetConvolutionGroupCount(l->convDesc, l->groups);
        #else
        if(l->groups > 1){
            error("CUDNN < 7 doesn't support groups, please upgrade!");
        }
        #endif
        #if CUDNN_MAJOR >= 8
        int returnedAlgoCount;
        cudnnConvolutionFwdAlgoPerf_t       fw_results[2 * CUDNN_CONVOLUTION_FWD_ALGO_COUNT];
        cudnnConvolutionBwdDataAlgoPerf_t   bd_results[2 * CUDNN_CONVOLUTION_BWD_DATA_ALGO_COUNT];
        cudnnConvolutionBwdFilterAlgoPerf_t bf_results[2 * CUDNN_CONVOLUTION_BWD_FILTER_ALGO_COUNT];
    
        cudnnFindConvolutionForwardAlgorithm(cudnn_handle(),
                l->srcTensorDesc,
                l->weightDesc,
                l->convDesc,
                l->dstTensorDesc,
                CUDNN_CONVOLUTION_FWD_ALGO_COUNT,
                &returnedAlgoCount,
    	    fw_results);
        for(int algoIndex = 0; algoIndex < returnedAlgoCount; ++algoIndex){
            #if PRINT_CUDNN_ALGO > 0
            printf("^^^^ %s for Algo %d: %f time requiring %llu memory\n",
                   cudnnGetErrorString(fw_results[algoIndex].status),
                   fw_results[algoIndex].algo, fw_results[algoIndex].time,
                   (unsigned long long)fw_results[algoIndex].memory);
            #endif
            if( fw_results[algoIndex].memory < MEMORY_LIMIT ){
                l->fw_algo = fw_results[algoIndex].algo;
                break;
    	}
        }
    
        cudnnFindConvolutionBackwardDataAlgorithm(cudnn_handle(),
                l->weightDesc,
                l->ddstTensorDesc,
                l->convDesc,
                l->dsrcTensorDesc,
                CUDNN_CONVOLUTION_BWD_DATA_ALGO_COUNT,
                &returnedAlgoCount,
                bd_results);
        for(int algoIndex = 0; algoIndex < returnedAlgoCount; ++algoIndex){
            #if PRINT_CUDNN_ALGO > 0
            printf("^^^^ %s for Algo %d: %f time requiring %llu memory\n",
                   cudnnGetErrorString(bd_results[algoIndex].status),
                   bd_results[algoIndex].algo, bd_results[algoIndex].time,
                   (unsigned long long)bd_results[algoIndex].memory);
            #endif
            if( bd_results[algoIndex].memory < MEMORY_LIMIT ){
                l->bd_algo = bd_results[algoIndex].algo;
                break;
            }
        }
    
        cudnnFindConvolutionBackwardFilterAlgorithm(cudnn_handle(),
                l->srcTensorDesc,
                l->ddstTensorDesc,
                l->convDesc,
                l->dweightDesc,
                CUDNN_CONVOLUTION_BWD_FILTER_ALGO_COUNT,
                &returnedAlgoCount,
                bf_results);
        for(int algoIndex = 0; algoIndex < returnedAlgoCount; ++algoIndex){
            #if PRINT_CUDNN_ALGO > 0
            printf("^^^^ %s for Algo %d: %f time requiring %llu memory\n",
                   cudnnGetErrorString(bf_results[algoIndex].status),
                   bf_results[algoIndex].algo, bf_results[algoIndex].time,
                   (unsigned long long)bf_results[algoIndex].memory);
            #endif
            if( bf_results[algoIndex].memory < MEMORY_LIMIT ){
                l->bf_algo = bf_results[algoIndex].algo;
                break;
            }
        }
    
        #else
    
        cudnnGetConvolutionForwardAlgorithm(cudnn_handle(),
                l->srcTensorDesc,
                l->weightDesc,
                l->convDesc,
                l->dstTensorDesc,
                CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT,
                2000000000,
                &l->fw_algo);
        cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(),
                l->weightDesc,
                l->ddstTensorDesc,
                l->convDesc,
                l->dsrcTensorDesc,
                CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT,
                2000000000,
                &l->bd_algo);
        cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle(),
                l->srcTensorDesc,
                l->ddstTensorDesc,
                l->convDesc,
                l->dweightDesc,
                CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT,
                2000000000,
                &l->bf_algo);
        #endif
    }
    #endif
    #endif
    
    convolutional_layer make_convolutional_layer(int batch, int h, int w, int c, int n, int groups, int size, int stride, int padding, ACTIVATION activation, int batch_normalize, int binary, int xnor, int adam)
    {
        int i;
        convolutional_layer l = {0};
        l.type = CONVOLUTIONAL;
    
        l.groups = groups;
        l.h = h;
        l.w = w;
        l.c = c;
        l.n = n;
        l.binary = binary;
        l.xnor = xnor;
        l.batch = batch;
        l.stride = stride;
        l.size = size;
        l.pad = padding;
        l.batch_normalize = batch_normalize;
    
        l.weights = calloc(c/groups*n*size*size, sizeof(float));
        l.weight_updates = calloc(c/groups*n*size*size, sizeof(float));
    
        l.biases = calloc(n, sizeof(float));
        l.bias_updates = calloc(n, sizeof(float));
    
        l.nweights = c/groups*n*size*size;
        l.nbiases = n;
    
        // float scale = 1./sqrt(size*size*c);
        float scale = sqrt(2./(size*size*c/l.groups));
        //printf("convscale %f\n", scale);
        //scale = .02;
        //for(i = 0; i < c*n*size*size; ++i) l.weights[i] = scale*rand_uniform(-1, 1);
        for(i = 0; i < l.nweights; ++i) l.weights[i] = scale*rand_normal();
        int out_w = convolutional_out_width(l);
        int out_h = convolutional_out_height(l);
        l.out_h = out_h;
        l.out_w = out_w;
        l.out_c = n;
        l.outputs = l.out_h * l.out_w * l.out_c;
        l.inputs = l.w * l.h * l.c;
    
        l.output = calloc(l.batch*l.outputs, sizeof(float));
        l.delta  = calloc(l.batch*l.outputs, sizeof(float));
    
        l.forward = forward_convolutional_layer;
        l.backward = backward_convolutional_layer;
        l.update = update_convolutional_layer;
        if(binary){
            l.binary_weights = calloc(l.nweights, sizeof(float));
            l.cweights = calloc(l.nweights, sizeof(char));
            l.scales = calloc(n, sizeof(float));
        }
        if(xnor){
            l.binary_weights = calloc(l.nweights, sizeof(float));
            l.binary_input = calloc(l.inputs*l.batch, sizeof(float));
        }
    
        if(batch_normalize){
            l.scales = calloc(n, sizeof(float));
            l.scale_updates = calloc(n, sizeof(float));
            for(i = 0; i < n; ++i){
                l.scales[i] = 1;
            }
    
            l.mean = calloc(n, sizeof(float));
            l.variance = calloc(n, sizeof(float));
    
            l.mean_delta = calloc(n, sizeof(float));
            l.variance_delta = calloc(n, sizeof(float));
    
            l.rolling_mean = calloc(n, sizeof(float));
            l.rolling_variance = calloc(n, sizeof(float));
            l.x = calloc(l.batch*l.outputs, sizeof(float));
            l.x_norm = calloc(l.batch*l.outputs, sizeof(float));
        }
        if(adam){
            l.m = calloc(l.nweights, sizeof(float));
            l.v = calloc(l.nweights, sizeof(float));
            l.bias_m = calloc(n, sizeof(float));
            l.scale_m = calloc(n, sizeof(float));
            l.bias_v = calloc(n, sizeof(float));
            l.scale_v = calloc(n, sizeof(float));
        }
    
    #ifdef GPU
        l.forward_gpu = forward_convolutional_layer_gpu;
        l.backward_gpu = backward_convolutional_layer_gpu;
        l.update_gpu = update_convolutional_layer_gpu;
    
        if(gpu_index >= 0){
            if (adam) {
                l.m_gpu = cuda_make_array(l.m, l.nweights);
                l.v_gpu = cuda_make_array(l.v, l.nweights);
                l.bias_m_gpu = cuda_make_array(l.bias_m, n);
                l.bias_v_gpu = cuda_make_array(l.bias_v, n);
                l.scale_m_gpu = cuda_make_array(l.scale_m, n);
                l.scale_v_gpu = cuda_make_array(l.scale_v, n);
            }
    
            l.weights_gpu = cuda_make_array(l.weights, l.nweights);
            l.weight_updates_gpu = cuda_make_array(l.weight_updates, l.nweights);
    
            l.biases_gpu = cuda_make_array(l.biases, n);
            l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
    
            l.delta_gpu = cuda_make_array(l.delta, l.batch*out_h*out_w*n);
            l.output_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
    
            if(binary){
                l.binary_weights_gpu = cuda_make_array(l.weights, l.nweights);
            }
            if(xnor){
                l.binary_weights_gpu = cuda_make_array(l.weights, l.nweights);
                l.binary_input_gpu = cuda_make_array(0, l.inputs*l.batch);
            }
    
            if(batch_normalize){
                l.mean_gpu = cuda_make_array(l.mean, n);
                l.variance_gpu = cuda_make_array(l.variance, n);
    
                l.rolling_mean_gpu = cuda_make_array(l.mean, n);
                l.rolling_variance_gpu = cuda_make_array(l.variance, n);
    
                l.mean_delta_gpu = cuda_make_array(l.mean, n);
                l.variance_delta_gpu = cuda_make_array(l.variance, n);
    
                l.scales_gpu = cuda_make_array(l.scales, n);
                l.scale_updates_gpu = cuda_make_array(l.scale_updates, n);
    
                l.x_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
                l.x_norm_gpu = cuda_make_array(l.output, l.batch*out_h*out_w*n);
            }
    #ifdef CUDNN
            cudnnCreateTensorDescriptor(&l.normTensorDesc);
            cudnnCreateTensorDescriptor(&l.srcTensorDesc);
            cudnnCreateTensorDescriptor(&l.dstTensorDesc);
            cudnnCreateFilterDescriptor(&l.weightDesc);
            cudnnCreateTensorDescriptor(&l.dsrcTensorDesc);
            cudnnCreateTensorDescriptor(&l.ddstTensorDesc);
            cudnnCreateFilterDescriptor(&l.dweightDesc);
            cudnnCreateConvolutionDescriptor(&l.convDesc);
            cudnn_convolutional_setup(&l);
    #endif
        }
    #endif
        l.workspace_size = get_workspace_size(l);
        l.activation = activation;
    
        fprintf(stderr, "conv  %5d %2d x%2d /%2d  %4d x%4d x%4d   ->  %4d x%4d x%4d  %5.3f BFLOPs\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c, (2.0 * l.n * l.size*l.size*l.c/l.groups * l.out_h*l.out_w)/1000000000.);
    
        return l;
    }
    
    void denormalize_convolutional_layer(convolutional_layer l)
    {
        int i, j;
        for(i = 0; i < l.n; ++i){
            float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001);
            for(j = 0; j < l.c/l.groups*l.size*l.size; ++j){
                l.weights[i*l.c/l.groups*l.size*l.size + j] *= scale;
            }
            l.biases[i] -= l.rolling_mean[i] * scale;
            l.scales[i] = 1;
            l.rolling_mean[i] = 0;
            l.rolling_variance[i] = 1;
        }
    }
    
    /*
    void test_convolutional_layer()
    {
        convolutional_layer l = make_convolutional_layer(1, 5, 5, 3, 2, 5, 2, 1, LEAKY, 1, 0, 0, 0);
        l.batch_normalize = 1;
        float data[] = {1,1,1,1,1,
            1,1,1,1,1,
            1,1,1,1,1,
            1,1,1,1,1,
            1,1,1,1,1,
            2,2,2,2,2,
            2,2,2,2,2,
            2,2,2,2,2,
            2,2,2,2,2,
            2,2,2,2,2,
            3,3,3,3,3,
            3,3,3,3,3,
            3,3,3,3,3,
            3,3,3,3,3,
            3,3,3,3,3};
        //net.input = data;
        //forward_convolutional_layer(l);
    }
    */
    
    void resize_convolutional_layer(convolutional_layer *l, int w, int h)
    {
        l->w = w;
        l->h = h;
        int out_w = convolutional_out_width(*l);
        int out_h = convolutional_out_height(*l);
    
        l->out_w = out_w;
        l->out_h = out_h;
    
        l->outputs = l->out_h * l->out_w * l->out_c;
        l->inputs = l->w * l->h * l->c;
    
        l->output = realloc(l->output, l->batch*l->outputs*sizeof(float));
        l->delta  = realloc(l->delta,  l->batch*l->outputs*sizeof(float));
        if(l->batch_normalize){
            l->x = realloc(l->x, l->batch*l->outputs*sizeof(float));
            l->x_norm  = realloc(l->x_norm, l->batch*l->outputs*sizeof(float));
        }
    
    #ifdef GPU
        cuda_free(l->delta_gpu);
        cuda_free(l->output_gpu);
    
        l->delta_gpu =  cuda_make_array(l->delta,  l->batch*l->outputs);
        l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs);
    
        if(l->batch_normalize){
            cuda_free(l->x_gpu);
            cuda_free(l->x_norm_gpu);
    
            l->x_gpu = cuda_make_array(l->output, l->batch*l->outputs);
            l->x_norm_gpu = cuda_make_array(l->output, l->batch*l->outputs);
        }
    #ifdef CUDNN
        cudnn_convolutional_setup(l);
    #endif
    #endif
        l->workspace_size = get_workspace_size(*l);
    }
    
    void add_bias(float *output, float *biases, int batch, int n, int size)
    {
        int i,j,b;
        for(b = 0; b < batch; ++b){
            for(i = 0; i < n; ++i){
                for(j = 0; j < size; ++j){
                    output[(b*n + i)*size + j] += biases[i];
                }
            }
        }
    }
    
    void scale_bias(float *output, float *scales, int batch, int n, int size)
    {
        int i,j,b;
        for(b = 0; b < batch; ++b){
            for(i = 0; i < n; ++i){
                for(j = 0; j < size; ++j){
                    output[(b*n + i)*size + j] *= scales[i];
                }
            }
        }
    }
    
    void backward_bias(float *bias_updates, float *delta, int batch, int n, int size)
    {
        int i,b;
        for(b = 0; b < batch; ++b){
            for(i = 0; i < n; ++i){
                bias_updates[i] += sum_array(delta+size*(i+b*n), size);
            }
        }
    }
    
    void forward_convolutional_layer(convolutional_layer l, network net)
    {
        int i, j;
    
        fill_cpu(l.outputs*l.batch, 0, l.output, 1);
    
        if(l.xnor){
            binarize_weights(l.weights, l.n, l.c/l.groups*l.size*l.size, l.binary_weights);
            swap_binary(&l);
            binarize_cpu(net.input, l.c*l.h*l.w*l.batch, l.binary_input);
            net.input = l.binary_input;
        }
    
        int m = l.n/l.groups;
        int k = l.size*l.size*l.c/l.groups;
        int n = l.out_w*l.out_h;
        for(i = 0; i < l.batch; ++i){
            for(j = 0; j < l.groups; ++j){
                float *a = l.weights + j*l.nweights/l.groups;
                float *b = net.workspace;
                float *c = l.output + (i*l.groups + j)*n*m;
                float *im =  net.input + (i*l.groups + j)*l.c/l.groups*l.h*l.w;
    
                if (l.size == 1) {
                    b = im;
                } else {
                    im2col_cpu(im, l.c/l.groups, l.h, l.w, l.size, l.stride, l.pad, b);
                }
                gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
            }
        }
    
        if(l.batch_normalize){
            forward_batchnorm_layer(l, net);
        } else {
            add_bias(l.output, l.biases, l.batch, l.n, l.out_h*l.out_w);
        }
    
        activate_array(l.output, l.outputs*l.batch, l.activation);
        if(l.binary || l.xnor) swap_binary(&l);
    }
    
    void backward_convolutional_layer(convolutional_layer l, network net)
    {
        int i, j;
        int m = l.n/l.groups;
        int n = l.size*l.size*l.c/l.groups;
        int k = l.out_w*l.out_h;
    
        gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta);
    
        if(l.batch_normalize){
            backward_batchnorm_layer(l, net);
        } else {
            backward_bias(l.bias_updates, l.delta, l.batch, l.n, k);
        }
    
        for(i = 0; i < l.batch; ++i){
            for(j = 0; j < l.groups; ++j){
                float *a = l.delta + (i*l.groups + j)*m*k;
                float *b = net.workspace;
                float *c = l.weight_updates + j*l.nweights/l.groups;
    
                float *im  = net.input + (i*l.groups + j)*l.c/l.groups*l.h*l.w;
                float *imd = net.delta + (i*l.groups + j)*l.c/l.groups*l.h*l.w;
    
                if(l.size == 1){
                    b = im;
                } else {
                    im2col_cpu(im, l.c/l.groups, l.h, l.w, 
                            l.size, l.stride, l.pad, b);
                }
    
                gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
    
                if (net.delta) {
                    a = l.weights + j*l.nweights/l.groups;
                    b = l.delta + (i*l.groups + j)*m*k;
                    c = net.workspace;
                    if (l.size == 1) {
                        c = imd;
                    }
    
                    gemm(1,0,n,k,m,1,a,n,b,k,0,c,k);
    
                    if (l.size != 1) {
                        col2im_cpu(net.workspace, l.c/l.groups, l.h, l.w, l.size, l.stride, l.pad, imd);
                    }
                }
            }
        }
    }
    
    void update_convolutional_layer(convolutional_layer l, update_args a)
    {
        float learning_rate = a.learning_rate*l.learning_rate_scale;
        float momentum = a.momentum;
        float decay = a.decay;
        int batch = a.batch;
    
        axpy_cpu(l.n, learning_rate/batch, l.bias_updates, 1, l.biases, 1);
        scal_cpu(l.n, momentum, l.bias_updates, 1);
    
        if(l.scales){
            axpy_cpu(l.n, learning_rate/batch, l.scale_updates, 1, l.scales, 1);
            scal_cpu(l.n, momentum, l.scale_updates, 1);
        }
    
        axpy_cpu(l.nweights, -decay*batch, l.weights, 1, l.weight_updates, 1);
        axpy_cpu(l.nweights, learning_rate/batch, l.weight_updates, 1, l.weights, 1);
        scal_cpu(l.nweights, momentum, l.weight_updates, 1);
    }
    
    
    image get_convolutional_weight(convolutional_layer l, int i)
    {
        int h = l.size;
        int w = l.size;
        int c = l.c/l.groups;
        return float_to_image(w,h,c,l.weights+i*h*w*c);
    }
    
    void rgbgr_weights(convolutional_layer l)
    {
        int i;
        for(i = 0; i < l.n; ++i){
            image im = get_convolutional_weight(l, i);
            if (im.c == 3) {
                rgbgr_image(im);
            }
        }
    }
    
    void rescale_weights(convolutional_layer l, float scale, float trans)
    {
        int i;
        for(i = 0; i < l.n; ++i){
            image im = get_convolutional_weight(l, i);
            if (im.c == 3) {
                scale_image(im, scale);
                float sum = sum_array(im.data, im.w*im.h*im.c);
                l.biases[i] += sum*trans;
            }
        }
    }
    
    image *get_weights(convolutional_layer l)
    {
        image *weights = calloc(l.n, sizeof(image));
        int i;
        for(i = 0; i < l.n; ++i){
            weights[i] = copy_image(get_convolutional_weight(l, i));
            normalize_image(weights[i]);
            /*
               char buff[256];
               sprintf(buff, "filter%d", i);
               save_image(weights[i], buff);
             */
        }
        //error("hey");
        return weights;
    }
    
    image *visualize_convolutional_layer(convolutional_layer l, char *window, image *prev_weights)
    {
        image *single_weights = get_weights(l);
        show_images(single_weights, l.n, window);
    
        image delta = get_convolutional_image(l);
        image dc = collapse_image_layers(delta, 1);
        char buff[256];
        sprintf(buff, "%s: Output", window);
        //show_image(dc, buff);
        //save_image(dc, buff);
        free_image(dc);
        return single_weights;
    }
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 118
    • 119
    • 120
    • 121
    • 122
    • 123
    • 124
    • 125
    • 126
    • 127
    • 128
    • 129
    • 130
    • 131
    • 132
    • 133
    • 134
    • 135
    • 136
    • 137
    • 138
    • 139
    • 140
    • 141
    • 142
    • 143
    • 144
    • 145
    • 146
    • 147
    • 148
    • 149
    • 150
    • 151
    • 152
    • 153
    • 154
    • 155
    • 156
    • 157
    • 158
    • 159
    • 160
    • 161
    • 162
    • 163
    • 164
    • 165
    • 166
    • 167
    • 168
    • 169
    • 170
    • 171
    • 172
    • 173
    • 174
    • 175
    • 176
    • 177
    • 178
    • 179
    • 180
    • 181
    • 182
    • 183
    • 184
    • 185
    • 186
    • 187
    • 188
    • 189
    • 190
    • 191
    • 192
    • 193
    • 194
    • 195
    • 196
    • 197
    • 198
    • 199
    • 200
    • 201
    • 202
    • 203
    • 204
    • 205
    • 206
    • 207
    • 208
    • 209
    • 210
    • 211
    • 212
    • 213
    • 214
    • 215
    • 216
    • 217
    • 218
    • 219
    • 220
    • 221
    • 222
    • 223
    • 224
    • 225
    • 226
    • 227
    • 228
    • 229
    • 230
    • 231
    • 232
    • 233
    • 234
    • 235
    • 236
    • 237
    • 238
    • 239
    • 240
    • 241
    • 242
    • 243
    • 244
    • 245
    • 246
    • 247
    • 248
    • 249
    • 250
    • 251
    • 252
    • 253
    • 254
    • 255
    • 256
    • 257
    • 258
    • 259
    • 260
    • 261
    • 262
    • 263
    • 264
    • 265
    • 266
    • 267
    • 268
    • 269
    • 270
    • 271
    • 272
    • 273
    • 274
    • 275
    • 276
    • 277
    • 278
    • 279
    • 280
    • 281
    • 282
    • 283
    • 284
    • 285
    • 286
    • 287
    • 288
    • 289
    • 290
    • 291
    • 292
    • 293
    • 294
    • 295
    • 296
    • 297
    • 298
    • 299
    • 300
    • 301
    • 302
    • 303
    • 304
    • 305
    • 306
    • 307
    • 308
    • 309
    • 310
    • 311
    • 312
    • 313
    • 314
    • 315
    • 316
    • 317
    • 318
    • 319
    • 320
    • 321
    • 322
    • 323
    • 324
    • 325
    • 326
    • 327
    • 328
    • 329
    • 330
    • 331
    • 332
    • 333
    • 334
    • 335
    • 336
    • 337
    • 338
    • 339
    • 340
    • 341
    • 342
    • 343
    • 344
    • 345
    • 346
    • 347
    • 348
    • 349
    • 350
    • 351
    • 352
    • 353
    • 354
    • 355
    • 356
    • 357
    • 358
    • 359
    • 360
    • 361
    • 362
    • 363
    • 364
    • 365
    • 366
    • 367
    • 368
    • 369
    • 370
    • 371
    • 372
    • 373
    • 374
    • 375
    • 376
    • 377
    • 378
    • 379
    • 380
    • 381
    • 382
    • 383
    • 384
    • 385
    • 386
    • 387
    • 388
    • 389
    • 390
    • 391
    • 392
    • 393
    • 394
    • 395
    • 396
    • 397
    • 398
    • 399
    • 400
    • 401
    • 402
    • 403
    • 404
    • 405
    • 406
    • 407
    • 408
    • 409
    • 410
    • 411
    • 412
    • 413
    • 414
    • 415
    • 416
    • 417
    • 418
    • 419
    • 420
    • 421
    • 422
    • 423
    • 424
    • 425
    • 426
    • 427
    • 428
    • 429
    • 430
    • 431
    • 432
    • 433
    • 434
    • 435
    • 436
    • 437
    • 438
    • 439
    • 440
    • 441
    • 442
    • 443
    • 444
    • 445
    • 446
    • 447
    • 448
    • 449
    • 450
    • 451
    • 452
    • 453
    • 454
    • 455
    • 456
    • 457
    • 458
    • 459
    • 460
    • 461
    • 462
    • 463
    • 464
    • 465
    • 466
    • 467
    • 468
    • 469
    • 470
    • 471
    • 472
    • 473
    • 474
    • 475
    • 476
    • 477
    • 478
    • 479
    • 480
    • 481
    • 482
    • 483
    • 484
    • 485
    • 486
    • 487
    • 488
    • 489
    • 490
    • 491
    • 492
    • 493
    • 494
    • 495
    • 496
    • 497
    • 498
    • 499
    • 500
    • 501
    • 502
    • 503
    • 504
    • 505
    • 506
    • 507
    • 508
    • 509
    • 510
    • 511
    • 512
    • 513
    • 514
    • 515
    • 516
    • 517
    • 518
    • 519
    • 520
    • 521
    • 522
    • 523
    • 524
    • 525
    • 526
    • 527
    • 528
    • 529
    • 530
    • 531
    • 532
    • 533
    • 534
    • 535
    • 536
    • 537
    • 538
    • 539
    • 540
    • 541
    • 542
    • 543
    • 544
    • 545
    • 546
    • 547
    • 548
    • 549
    • 550
    • 551
    • 552
    • 553
    • 554
    • 555
    • 556
    • 557
    • 558
    • 559
    • 560
    • 561
    • 562
    • 563
    • 564
    • 565
    • 566
    • 567
    • 568
    • 569
    • 570
    • 571
    • 572
    • 573
    • 574
    • 575
    • 576
    • 577
    • 578
    • 579
    • 580
    • 581
    • 582
    • 583
    • 584
    • 585
    • 586
    • 587
    • 588
    • 589
    • 590
    • 591
    • 592
    • 593
    • 594
    • 595
    • 596
    • 597
    • 598
    • 599
    • 600
    • 601
    • 602
    • 603
    • 604
    • 605
    • 606
    • 607
    • 608
    • 609
    • 610
    • 611
    • 612
    • 613
    • 614
    • 615
    • 616
    • 617
    • 618
    • 619
    • 620
    • 621
    • 622
    • 623
    • 624
    • 625
    • 626
    • 627
    • 628
    • 629
    • 630
    • 631
    • 632
    • 633
    • 634
    • 635
    • 636
    • 637
    • 638
    • 639
    • 640
    • 641
    • 642
    • 643
    • 644
    • 645
    • 646
    • 647
    • 648
    • 649
    • 650
    • 651
    • 652
    • 653
    • 654
    • 655
    • 656
    • 657
    • 658
    • 659
    • 660
    • 661
    • 662
    • 663
    • 664
    • 665
    • 666
    • 667
    • 668
    • 669
    • 670
    • 671
    • 672
    • 673
    • 674
    • 675
    • 676
    • 677
    • 678
    • 679
    • 680
    • 681
    • 682
    • 683
    • 684
    • 685
    • 686
    • 687
    • 688
    • 689
    • 690
    • 691
    • 692
    • 693
    • 694
    • 695
    • 696
    • 修改/src/gemm.c中的cudaThreadSynchronizecudaDeviceSynchronize
    • Makefile中添加,并删除掉低版本的信息
    -gencode arch=compute_70,code=[sm_70,compute_70] \
    -gencode arch=compute_75,code=[sm_75,compute_75] \
    -gencode arch=compute_86,code=[sm_86,compute_86]
    
    • 1
    • 2
    • 3

    最后,用make命令编译

    3、编译出错

    /bin/sh: 1: nvcc: not found
    sudo

    修改Makefilenvcc 的路径

    NVCC=/usr/local/cuda/bin/nvcc
    
    • 1
  • 相关阅读:
    顺序表-c语言实现
    面试经典150题——生命游戏
    随身wifi 救砖过程记录
    hadoop使用笔记
    RGB转MIPI转换板制作(2)
    单片机-LED介绍
    使用Flink AggregateFunction计算股票的平均值报错
    学习嵌入式的第十六天----结构体 共用体
    LeetCode 热题 1. 两数之和 2. 两数相加 3. 无重复字符的最长子串 4. 寻找两个正序数组的中位数 5. 最长回文子串
    战略进攻能力的重要性,要远远高于战略防守能力
  • 原文地址:https://blog.csdn.net/King_key/article/details/128166796