之前写过一个项目,eval的时候很正常,但是一infer就有问题,多次排查发现,原来就是只缺一个
model.eval()
哇,重大教训,我debug好久,在小姑娘面前翻车… 🤣🤣🤣
在文档中 nn.Module (torch) 或者 nn.Layer (Paddle) 的 eval 都是说会影响 Dropout 和 BatchNorm
本文来看一下 eval 对 dropout 和 BatchNorm 做了什么
import paddle
import paddle.nn as nn
model = nn.Dropout(0.9)
model.train()
inp = paddle.rand([3, 4])
out = model(inp)
>>> inp
Tensor(shape=[3, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
[[0.62465787, 0.75934911, 0.22212228, 0.46498537],
[0.52518481, 0.94535673, 0.77799159, 0.50506479],
[0.26053512, 0.26007101, 0.17834763, 0.70845836]])
>>> out
Tensor(shape=[3, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
[[0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 0. ],
[0. , 0. , 0. , 7.08458233]])
但是如果加上 model.eval
import paddle
import paddle.nn as nn
model = nn.Dropout(0.9)
model.eval()
inp = paddle.rand([3, 4])
out = model(inp)
>>> inp
Tensor(shape=[3, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
[[0.85406083, 0.30777919, 0.84194952, 0.31621146],
[0.19795220, 0.84470266, 0.64288461, 0.28012937],
[0.76796150, 0.28145868, 0.44665241, 0.64438581]])
>>> out
Tensor(shape=[3, 4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
[[0.85406083, 0.30777919, 0.84194952, 0.31621146],
[0.19795220, 0.84470266, 0.64288461, 0.28012937],
[0.76796150, 0.28145868, 0.44665241, 0.64438581]])
如果 model 没有设置 .eval,则在 infer 中大概率有问题,因为 infer 一般 batch_size 为1,导致推理时的偏差较大,来,接下来看看到底是怎么个偏差较大
这里专门用 mnist 来做个例子,用Paddle实现,torch差不多
数据集加载:
import paddle
import paddle.nn as nn
import paddle.vision.transforms as T
from paddle.vision.datasets import MNIST
from paddle.io import DataLoader
transform = T.Compose(
[
T.ToTensor(),
T.Normalize(
mean=[127.5],
std=[127.5],
),
]
)
train_mnist = MNIST(
mode="train",
transform=transform,
backend="cv2",
)
test_mnist = MNIST(
mode="test",
transform=transform,
backend="cv2",
)
train_loader = DataLoader(
dataset=train_mnist,
shuffle=True,
num_workers=8,
batch_size=256,
)
test_loader = DataLoader(
dataset=test_mnist,
shuffle=False,
num_workers=8,
batch_size=256,
)
模型定义:(也可通过本demo学习BN中的 moving_mean 和 moving_variance 是如何计算的)
class Model(nn.Layer):
def __init__(self, hidden_num=32, out_num=10):
super().__init__()
self.fc1 = nn.Linear(28*28, hidden_num)
self.bn = nn.BatchNorm(hidden_num)
self.fc2 = nn.Linear(hidden_num, out_num)
self.softmax = nn.Softmax()
def forward(self, inputs, **kwargs):
x = inputs.flatten(1)
x = self.fc1(x)
print("========= bn之前存的数据: =========")
print(self.bn._mean, self.bn._variance)
print()
x_mean = x.mean(0)
# x_variance = paddle.var(x, 0)
x_variance = ((x - x_mean)*(x - x_mean)).mean(0)
print("========= 当前 Batch 的数据: =========")
print(x_mean, x_variance)
print()
bn_new_mean = self.bn._mean * self.bn._momentum + x_mean * (1-self.bn._momentum)
bn_new_var = self.bn._variance * self.bn._momentum + x_variance * (1-self.bn._momentum)
print("========= 手动计算的新数据数据: =========")
print(bn_new_mean, bn_new_var)
print()
x = self.bn(x)
print("========= bn计算之后的新数据: =========")
print(self.bn._mean, self.bn._variance)
print()
# x = self.dropout(x)
x = self.fc2(x)
x = self.softmax(x)
return x
训练开始:
model = Model()
model.train()
for img, label in train_loader:
label = nn.functional.one_hot(label.flatten(), 10)
out = model(img)
break
来看下最后的输出:
========= bn之前存的数据: =========
Parameter containing:
Tensor(shape=[32], dtype=float32, place=Place(gpu:0), stop_gradient=True,
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) Parameter containing:
Tensor(shape=[32], dtype=float32, place=Place(gpu:0), stop_gradient=True,
[1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.,
1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])
========= 当前 Batch 的数据: =========
Tensor(shape=[32], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[-0.38882941, 0.03430356, 0.72941995, 0.88257772, 0.59287441,
1.43031311, 1.16276920, -0.10491234, -0.93039852, 0.42681891,
1.14838040, -0.21730696, -0.54693860, -0.14556082, -1.01294327,
-0.71115893, 1.10771430, -0.77535808, 0.39560708, -0.68615019,
1.51775694, -0.47886604, -0.14928204, 0.50894970, 1.76031160,
0.50432783, 0.19052365, -2.01953459, 1.84687483, -0.70989704,
-1.44391048, 1.64701092]) Tensor(shape=[32], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[0.58479834, 0.99659586, 0.33979574, 0.48517889, 0.65143955, 0.56042129,
0.48198137, 0.41009885, 0.56537294, 0.50146306, 0.37284675, 0.24294424,
0.71886718, 0.40560260, 0.49942270, 0.51505977, 0.71436852, 0.46243513,
0.44024459, 0.76668155, 0.48029205, 0.57720137, 0.33403489, 0.41284043,
0.37509984, 0.62300909, 0.53987831, 0.60129762, 0.55340236, 0.34260243,
0.53284788, 0.49520931])
========= 手动计算的新数据数据: =========
Tensor(shape=[32], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[-0.03888294, 0.00343036, 0.07294200, 0.08825777, 0.05928744,
0.14303131, 0.11627692, -0.01049123, -0.09303986, 0.04268189,
0.11483804, -0.02173070, -0.05469386, -0.01455608, -0.10129433,
-0.07111590, 0.11077143, -0.07753581, 0.03956071, -0.06861502,
0.15177570, -0.04788661, -0.01492820, 0.05089497, 0.17603116,
0.05043278, 0.01905237, -0.20195346, 0.18468748, -0.07098971,
-0.14439104, 0.16470109]) Tensor(shape=[32], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[0.95847982, 0.99965954, 0.93397957, 0.94851786, 0.96514392, 0.95604211,
0.94819814, 0.94100988, 0.95653725, 0.95014626, 0.93728465, 0.92429441,
0.97188669, 0.94056022, 0.94994223, 0.95150596, 0.97143686, 0.94624346,
0.94402444, 0.97666812, 0.94802916, 0.95772010, 0.93340349, 0.94128400,
0.93750995, 0.96230090, 0.95398784, 0.96012974, 0.95534021, 0.93426025,
0.95328474, 0.94952089])
========= bn计算之后的新数据: =========
Parameter containing:
Tensor(shape=[32], dtype=float32, place=Place(gpu:0), stop_gradient=True,
[-0.03888295, 0.00343036, 0.07294201, 0.08825779, 0.05928745,
0.14303134, 0.11627695, -0.01049124, -0.09303988, 0.04268190,
0.11483806, -0.02173070, -0.05469387, -0.01455608, -0.10129435,
-0.07111591, 0.11077145, -0.07753582, 0.03956072, -0.06861503,
0.15177573, -0.04788661, -0.01492821, 0.05089498, 0.17603120,
0.05043279, 0.01905237, -0.20195350, 0.18468753, -0.07098972,
-0.14439109, 0.16470113]) Parameter containing:
Tensor(shape=[32], dtype=float32, place=Place(gpu:0), stop_gradient=True,
[0.95870918, 1.00005043, 0.93411279, 0.94870818, 0.96539938, 0.95626187,
0.94838715, 0.94117069, 0.95675898, 0.95034295, 0.93743086, 0.92438966,
0.97216862, 0.94071931, 0.95013809, 0.95170796, 0.97171700, 0.94642484,
0.94419706, 0.97696882, 0.94821757, 0.95794648, 0.93353444, 0.94144595,
0.93765706, 0.96254522, 0.95419955, 0.96036553, 0.95555723, 0.93439460,
0.95349371, 0.94971514])
可以看到咱手动计算的 moving_mean 和 moving_variance 和 BN 内部计算的大差不差
OK, 接下里看看BN .train 和 .eval 有啥区别
paddle.seed(1107)
model = nn.BatchNorm(4)
model.eval()
inp = paddle.rand([2, 4])
out = model(inp)
>>> out
Tensor(shape=[2, 4], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.33660540, 0.05333305, 0.47220078, 0.21046987],
[0.03869555, 0.67438763, 0.12688087, 0.62906295]])
>>> inp
Tensor(shape=[2, 4], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.33660540, 0.05333305, 0.47220078, 0.21046987],
[0.03869555, 0.67438763, 0.12688087, 0.62906295]])
eval 情况下,BN模型直接用已经记录的 mean 和 var 来进行BN操作,而不是用那个滑动平均值去计算
而默认情况下,BN模型职工的 mean 和 var 是多少呢?
来看下源代码:
默认情况下mean都是0,var都是1,
而在.train()
训练情况下,会计算原有值和数据分布值的一个加权平均
m o v i n g _ m e a n = m o v i n g _ m e a n ∗ m o m e n t u m + μ β ∗ ( 1. − m o m e n t u m ) / / g l o b a l m e a n m o v i n g _ v a r i a n c e = m o v i n g _ v a r i a n c e ∗ m o m e n t u m + σ β 2 ∗ ( 1. − m o m e n t u m ) / / g l o b a l v a r i a n c e moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad // global mean \\ moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad // global variance moving_mean=moving_mean∗momentum+μβ∗(1.−momentum)//globalmeanmoving_variance=moving_variance∗momentum+σβ2∗(1.−momentum)//globalvariance
paddle.seed(1107)
model = nn.BatchNorm(4)
model.train()
inp = paddle.rand([2, 4])
out = model(inp)
>>> out
Tensor(shape=[2, 4], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[ 0.99977475, -0.99994820, 0.99983233, -0.99988586],
[-0.99977475, 0.99994814, -0.99983233, 0.99988598]])
>>> inp
Tensor(shape=[2, 4], dtype=float32, place=Place(gpu:0), stop_gradient=False,
[[0.33660540, 0.05333305, 0.47220078, 0.21046987],
[0.03869555, 0.67438763, 0.12688087, 0.62906295]])
接下来手动计算一下看看,这是BN中原来的 mean 和 var:
>>> model._mean, model._variance
(Parameter containing:
Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
[0., 0., 0., 0.]),
Parameter containing:
Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
[1., 1., 1., 1.]))
接下来计算一下数据的 mean 和 var:
>>> inp_mean = inp.mean(0)
>>> inp_mean
Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
[0.18765143, 0.36386219, 0.29954234, 0.41976851])
>>> inp_var = ((inp - inp_mean) * (inp - inp_mean)).mean(0)
>>> inp_var
Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
[0.02218779, 0.09642817, 0.02981176, 0.04380548])
手动计算一下以上二者的加权平均,这里用BN的默认值 momentum = 0.9 来计算
>>> my_bn_mean = inp_mean * 0.1 + 0 * 0.9
>>> my_bn_var = inp_var * 0.1 + 1 * 0.9
>>> my_bn_mean, my_bn_var
(Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
[0.01876514, 0.03638622, 0.02995423, 0.04197685]),
Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
[0.90221876, 0.90964282, 0.90298116, 0.90438050]))
接下来打印一下bn模型计算计算之后的结果:
>>> model._mean, model._variance
(Parameter containing:
Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
[0.01876515, 0.03638623, 0.02995424, 0.04197686]),
Parameter containing:
Tensor(shape=[4], dtype=float32, place=Place(gpu:0), stop_gradient=True,
[0.90443754, 0.91928560, 0.90596235, 0.90876108]))
以上结果大差不差,主要是在计算时还有一个
ϵ
=
1
0
−
5
\epsilon = 10^{-5}
ϵ=10−5 来防止除0错误:
x
i
^
←
x
i
−
μ
β
σ
β
2
+
ϵ
/
/
n
o
r
m
a
l
i
z
e
y
i
←
γ
x
i
^
+
β
/
/
s
c
a
l
e
a
n
d
s
h
i
f
t
\hat{x_i} \gets \frac{x_i - \mu_\beta} {\sqrt{\sigma_{\beta}^{2} + \epsilon}} \qquad //\ normalize \\ y_i \gets \gamma \hat{x_i} + \beta \qquad //\ scale\ and\ shift
xi^←σβ2+ϵxi−μβ// normalizeyi←γxi^+β// scale and shift
eval开启后,BN不再计算和数据分布有关的加权平均值,而是直接用已有的值mean 和 var 进行计算
所以如果在infer过程中,bs=1,会极大的扰动BN中的_mean 和 _var值 导致模型预测出错
综上,infer 时,一定要开启 model.eval()