码农知识堂 - 1000bd
  •   Python
  •   PHP
  •   JS/TS
  •   JAVA
  •   C/C++
  •   C#
  •   GO
  •   Kotlin
  •   Swift
  • Least-upper-bound property


    In mathematics, the least-upper-bound property (sometimes called completeness or supremum property or l.u.b. property)[1] is a fundamental property of the real numbers. More generally, a partially ordered set X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound (supremum) in X. Not every (partially) ordered set has the least upper bound property. For example, the set {\displaystyle \mathbb {Q} }\mathbb {Q} of all rational numbers with its natural order does not have the least upper bound property.

    The least-upper-bound property is one form of the completeness axiom for the real numbers, and is sometimes referred to as Dedekind completeness.[2] It can be used to prove many of the fundamental results of real analysis, such as the intermediate value theorem, the Bolzano–Weierstrass theorem, the extreme value theorem, and the Heine–Borel theorem. It is usually taken as an axiom in synthetic constructions of the real numbers, and it is also intimately related to the construction of the real numbers using Dedekind cuts.

    In order theory, this property can be generalized to a notion of completeness for any partially ordered set. A linearly ordered set that is dense and has the least upper bound property is called a linear continuum.

    在这里插入图片描述

    Every non-empty subset {\displaystyle M}M of the real numbers {\displaystyle \mathbb {R} }\mathbb {R} which is bounded from above has a least upper bound.

    Contents

    • 1 Statement of the property
      • 1.1 Statement for real numbers
      • 1.2 Generalization to ordered sets
    • 2 Proof
      • 2.1 Logical status
      • 2.2 Proof using Cauchy sequences
    • 3 Applications
      • 3.1 Intermediate value theorem
      • 3.2 Bolzano–Weierstrass theorem
      • 3.3 Extreme value theorem
      • 3.4 Heine–Borel theorem
    • 4 History
    • 5 See also

    1 Statement of the property

    1.1 Statement for real numbers

    1.2 Generalization to ordered sets

    2 Proof

    2.1 Logical status

    2.2 Proof using Cauchy sequences

    3 Applications

    3.1 Intermediate value theorem

    3.2 Bolzano–Weierstrass theorem

    3.3 Extreme value theorem

    3.4 Heine–Borel theorem

    4 History

    5 See also

  • 相关阅读:
    java计算机毕业设计水果商城设计源码+系统+mysql数据库+lw文档+部署
    vConsole调试工具的三种使用方式
    springboot二手书籍线上回收网站java ssm-0401u
    Apollo Planning规划算法仿真调试(14):Apollo中添加离线LGSVL仿真环境的HdMap实现联合仿真
    HCIP 第十四天
    Mysql 按照每小时,每天,每月,每年,不存在数据也显示
    计算机存储和进制转换
    PostMan发送携带参数Get请求、Post请求及SpringMVC解决Post请求中文乱码问题
    Java_反射(精心打磨详解)
    基于JSP的IQ智力测试系统
  • 原文地址:https://blog.csdn.net/qq_66485519/article/details/128123068
  • 最新文章
  • 攻防演习之三天拿下官网站群
    数据安全治理学习——前期安全规划和安全管理体系建设
    企业安全 | 企业内一次钓鱼演练准备过程
    内网渗透测试 | Kerberos协议及其部分攻击手法
    0day的产生 | 不懂代码的"代码审计"
    安装scrcpy-client模块av模块异常,环境问题解决方案
    leetcode hot100【LeetCode 279. 完全平方数】java实现
    OpenWrt下安装Mosquitto
    AnatoMask论文汇总
    【AI日记】24.11.01 LangChain、openai api和github copilot
  • 热门文章
  • 十款代码表白小特效 一个比一个浪漫 赶紧收藏起来吧!!!
    奉劝各位学弟学妹们,该打造你的技术影响力了!
    五年了,我在 CSDN 的两个一百万。
    Java俄罗斯方块,老程序员花了一个周末,连接中学年代!
    面试官都震惊,你这网络基础可以啊!
    你真的会用百度吗?我不信 — 那些不为人知的搜索引擎语法
    心情不好的时候,用 Python 画棵樱花树送给自己吧
    通宵一晚做出来的一款类似CS的第一人称射击游戏Demo!原来做游戏也不是很难,连憨憨学妹都学会了!
    13 万字 C 语言从入门到精通保姆级教程2021 年版
    10行代码集2000张美女图,Python爬虫120例,再上征途
Copyright © 2022 侵权请联系2656653265@qq.com    京ICP备2022015340号-1
正则表达式工具 cron表达式工具 密码生成工具

京公网安备 11010502049817号