• torchvision.models中模型编辑的requires_grad


    在对torchvision已有模型进行编辑的时候会保存已有训练结果,只针对编辑过的层进行训练,可以通过对requires_grad的赋值实现

    1. import torch
    2. import torchvision
    3. from torch import optim, nn
    4. def InitMode(mode_name):
    5. if mode_name == 'resnet152':
    6. return torchvision.models.resnet152(weights=torchvision.models.ResNet152_Weights.DEFAULT)
    7. elif mode_name == "resnet50":
    8. return torchvision.models.resnet50(weights=torchvision.models.ResNet50_Weights.DEFAULT)
    9. elif mode_name == "vgg16":
    10. return torchvision.models.vgg16(weights=torchvision.models.VGG16_Weights.DEFAULT)
    11. else:
    12. exit()
    13. mymodel = InitMode("vgg16")
    14. # 修改前
    15. for name, param in mymodel.named_parameters():
    16. print(name, param.requires_grad)
    17. print("=" * 30)
    18. # 修改requires_grad
    19. for param in mymodel.parameters():
    20. param.requires_grad = False
    21. for name, param in mymodel.named_parameters():
    22. print(name, param.requires_grad)
    23. print("=" * 30)
    24. mymodel.classifier[6] = nn.Linear(4096, 10)
    25. # 修改后
    26. for name, param in mymodel.named_parameters():
    27. print(name, param.requires_grad)
    28. exit()

    结果如下:

    D:\anaconda3\envs\pytorch_gpu\python.exe D:/project/python/pytorch_gpu/test.py
    features.0.weight True
    features.0.bias True
    features.2.weight True
    features.2.bias True
    features.5.weight True
    features.5.bias True
    features.7.weight True
    features.7.bias True
    features.10.weight True
    features.10.bias True
    features.12.weight True
    features.12.bias True
    features.14.weight True
    features.14.bias True
    features.17.weight True
    features.17.bias True
    features.19.weight True
    features.19.bias True
    features.21.weight True
    features.21.bias True
    features.24.weight True
    features.24.bias True
    features.26.weight True
    features.26.bias True
    features.28.weight True
    features.28.bias True
    classifier.0.weight True
    classifier.0.bias True
    classifier.3.weight True
    classifier.3.bias True
    classifier.6.weight True
    classifier.6.bias True

    ==============================
    features.0.weight False
    features.0.bias False
    features.2.weight False
    features.2.bias False
    features.5.weight False
    features.5.bias False
    features.7.weight False
    features.7.bias False
    features.10.weight False
    features.10.bias False
    features.12.weight False
    features.12.bias False
    features.14.weight False
    features.14.bias False
    features.17.weight False
    features.17.bias False
    features.19.weight False
    features.19.bias False
    features.21.weight False
    features.21.bias False
    features.24.weight False
    features.24.bias False
    features.26.weight False
    features.26.bias False
    features.28.weight False
    features.28.bias False
    classifier.0.weight False
    classifier.0.bias False
    classifier.3.weight False
    classifier.3.bias False
    classifier.6.weight False
    classifier.6.bias False

    ==============================
    features.0.weight False
    features.0.bias False
    features.2.weight False
    features.2.bias False
    features.5.weight False
    features.5.bias False
    features.7.weight False
    features.7.bias False
    features.10.weight False
    features.10.bias False
    features.12.weight False
    features.12.bias False
    features.14.weight False
    features.14.bias False
    features.17.weight False
    features.17.bias False
    features.19.weight False
    features.19.bias False
    features.21.weight False
    features.21.bias False
    features.24.weight False
    features.24.bias False
    features.26.weight False
    features.26.bias False
    features.28.weight False
    features.28.bias False
    classifier.0.weight False
    classifier.0.bias False
    classifier.3.weight False
    classifier.3.bias False
    classifier.6.weight True
    classifier.6.bias True

    进程已结束,退出代码0
     

    从结果来看,先对模型的 requires_grad 全部赋值到False,其结果从下载的缺省值True变为Flase。

    当对某个层进行编辑后,这个层的requires_grad会自动变为True。

    还不清楚是什么原因,记录一下

  • 相关阅读:
    无插件播放之http-flv
    面试中的自我激励:如何展示你的内在驱动力
    基于uni-app与图鸟UI打造的各领域移动端模板大赏
    IQ Products巨细胞病毒CMV感染检测试剂盒的特征和应用
    Go 里面的 ^ 和 &^
    go-zero微服务的使用
    MATLAB Simulink和S7-1200PLC MOBUSTCP通信
    2022科大讯飞商品销量智能预测挑战赛—参赛总结
    Apache Airflow (十一) :HiveOperator及调度HQL
    指针和段错误
  • 原文地址:https://blog.csdn.net/immc1979/article/details/128099907