The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U and V as descendants.
A binary search tree (BST) is recursively defined as a binary tree which has the following properties:
Given any two nodes in a BST, you are supposed to find their LCA.
Each input file contains one test case. For each case, the first line gives two positive integers: M (≤ 1,000), the number of pairs of nodes to be tested; and N (≤ 10,000), the number of keys in the BST, respectively. In the second line, N distinct integers are given as the preorder traversal sequence of the BST. Then M lines follow, each contains a pair of integer keys U and V. All the keys are in the range of int.
For each given pair of U and V, print in a line LCA of U and V is A.
if the LCA is found and A
is the key. But if A
is one of U and V, print X is an ancestor of Y.
where X
is A
and Y
is the other node. If U or V is not found in the BST, print in a line ERROR: U is not found.
or ERROR: V is not found.
or ERROR: U and V are not found.
.
- 6 8
- 6 3 1 2 5 4 8 7
- 2 5
- 8 7
- 1 9
- 12 -3
- 0 8
- 99 99
- LCA of 2 and 5 is 3.
- 8 is an ancestor of 7.
- ERROR: 9 is not found.
- ERROR: 12 and -3 are not found.
- ERROR: 0 is not found.
- ERROR: 99 and 99 are not found.
自己写的后面三个测试点超时了,好像是递归建树这里超时,在这里记录一下思路:
因为输入的是前序遍历,根据二叉搜索树定义,可以根据前序序列建树,同时记录每个节点的父节点,根节点的父节点为NULL,map记录出现的节点,输入u,v后先判断是否存在,如果都存在则通过r->fa找到父节点,并分别记录从u、v到达根节点的路径,然后将两条路径进行对比,第一个相同的值就是LCA。
- #include
- #include
- #include
- using namespace std;
-
- struct node {
- int val;
- node *fa;
- node *left;
- node *right;
- } *nu, *nv;
- int n, m, cnt1, cnt2, lca, u, v;
- int a[10010], t1[10010], t2[10010];
- bool flag1, flag2, find1, find2, flag;
- map<int, node *>q;
-
- node *build(node *r, node *fa, int val) {
- if (r == NULL) {
- r = new node();
- r->fa = fa;
- r->left = r->right = NULL;
- r->val = val;
- q[val] = r;
- } else if (val < r->val) {
- r->left = build(r->left, r, val);
- } else {
- r->right = build(r->right, r, val);
- }
- return r;
- }
-
- int main() {
- scanf("%d %d", &m, &n);
- node *root = NULL;
- for (int i = 0; i < n; i++) {
- scanf("%d", &a[i]);
- root = build(root, NULL, a[i]);
- }
- while (m--) {
- scanf("%d %d", &u, &v);
- flag = 0;
- flag1 = flag2 = 0;
- find1 = find2 = 0;
- cnt1 = cnt2 = 0;
- map<int, node *>::iterator it1, it2;
- it1 = q.find(u);
- it2 = q.find(v);
- if (q.find(u) != q.end()) {
- flag1 = 1;
- }
- if (q.find(v) != q.end()) {
- flag2 = 1;
- }
- if (!flag1 && !flag2) {
- printf("ERROR: %d and %d are not found.\n", u, v);
- } else if (!flag1 && flag2) {
- printf("ERROR: %d is not found.\n", u);
- } else if (flag1 && !flag2) {
- printf("ERROR: %d is not found.\n", v);
- } else {
- nu = it1->second;
- nv = it2->second;
- while (nu) {
- t1[cnt1++] = nu->val;
- nu = nu->fa;
- }
- while (nv) {
- t2[cnt2++] = nv->val;
- nv = nv->fa;
- }
- for (int i = 0; i < cnt1; i++) {
- if (flag) {
- break;
- }
- for (int j = 0; j < cnt2; j++) {
- if (t1[i] == t2[j]) {
- lca = t1[i];
- flag = 1;
- break;
- }
- }
- }
- if (u == lca) {
- printf("%d is an ancestor of %d.\n", u, v);
- } else if (v == lca) {
- printf("%d is an ancestor of %d.\n", v, u);
- } else {
- printf("LCA of %d and %d is %d.\n", u, v, lca);
- }
- }
- }
- return 0;
- }
最后看的柳神的思路,不得不说简直是降维打击,太强了:PAT 1143. Lowest Common Ancestor (30) – 甲级_柳婼的博客-CSDN博客