• 函数相乘和相除的导数及证明


    函数求导简介


    函数相乘求导

    [ f ( x ) ⋅ g ( x ) ] ′ = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) [f(x)\cdot g(x)]'=f'(x)g(x)+f(x)g'(x) [f(x)g(x)]=f(x)g(x)+f(x)g(x)

    证明:
    [ f ( x ) ⋅ g ( x ) ] ′ = lim ⁡ Δ x → 0 f ( x + Δ x ) ⋅ g ( x + Δ x ) − f ( x ) ⋅ g ( x ) Δ x \qquad [f(x)\cdot g(x)]'=\lim\limits_{\Delta x\rightarrow0}\dfrac{f(x+\Delta x)\cdot g(x+\Delta x)-f(x)\cdot g(x)}{\Delta x} [f(x)g(x)]=Δx0limΔxf(x+Δx)g(x+Δx)f(x)g(x)

    = lim ⁡ Δ x → 0 f ( x + Δ x ) ⋅ g ( x + Δ x ) − f ( x ) ⋅ g ( x + Δ x ) + f ( x ) ⋅ g ( x + Δ x ) − f ( x ) ⋅ g ( x ) Δ x \qquad \qquad \qquad \qquad =\lim\limits_{\Delta x\rightarrow0}\dfrac{f(x+\Delta x)\cdot g(x+\Delta x)-f(x)\cdot g(x+\Delta x)+f(x)\cdot g(x+\Delta x)-f(x)\cdot g(x)}{\Delta x} =Δx0limΔxf(x+Δx)g(x+Δx)f(x)g(x+Δx)+f(x)g(x+Δx)f(x)g(x)

    = lim ⁡ Δ x → 0 f ′ ( x ) Δ x ⋅ g ( x ) + g ′ ( x ) Δ x ⋅ f ( x ) Δ x \qquad \qquad \qquad \qquad =\lim\limits_{\Delta x\rightarrow0}\dfrac{f'(x)\Delta x\cdot g(x)+g'(x)\Delta x\cdot f(x)}{\Delta x} =Δx0limΔxf(x)Δxg(x)+g(x)Δxf(x)

    = f ′ ( x ) g ( x ) + f ( x ) g ′ ( x ) \qquad \qquad \qquad \qquad =f'(x)g(x)+f(x)g'(x) =f(x)g(x)+f(x)g(x)


    函数相除求导

    [ f ( x ) g ( x ) ] ′ = f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) g 2 ( x ) [\dfrac{f(x)}{g(x)}]'=\dfrac{f'(x)g(x)-f(x)g'(x)}{g^2(x)} [g(x)f(x)]=g2(x)f(x)g(x)f(x)g(x)

    证明:
    [ f ( x ) g ( x ) ] ′ = lim ⁡ Δ x → 0 f ( x + Δ x ) g ( x + Δ x ) − f ( x ) g ( x ) Δ x \qquad [\dfrac{f(x)}{g(x)}]'=\lim\limits_{\Delta x\rightarrow0}\dfrac{\frac{f(x+\Delta x)}{g(x+\Delta x)}-\frac{f(x)}{g(x)}}{\Delta x} [g(x)f(x)]=Δx0limΔxg(x+Δx)f(x+Δx)g(x)f(x)

    = lim ⁡ Δ x → 0 f ( x + Δ x ) g ( x ) − f ( x ) g ( x + Δ x ) g ( x + Δ x ) g ( x ) ⋅ 1 Δ x \qquad \qquad \qquad \qquad =\lim\limits_{\Delta x\rightarrow0}\dfrac{f(x+\Delta x)g(x)-f(x)g(x+\Delta x)}{g(x+\Delta x)g(x)}\cdot\dfrac{1}{\Delta x} =Δx0limg(x+Δx)g(x)f(x+Δx)g(x)f(x)g(x+Δx)Δx1

    = lim ⁡ Δ x → 0 f ( x + Δ x ) g ( x ) − f ( x ) g ( x ) + f ( x ) g ( x ) − f ( x ) g ( x + Δ x ) g ( x + Δ x ) g ( x ) ⋅ 1 Δ x \qquad \qquad \qquad \qquad =\lim\limits_{\Delta x\rightarrow0}\dfrac{f(x+\Delta x)g(x)-f(x)g(x)+f(x)g(x)-f(x)g(x+\Delta x)}{g(x+\Delta x)g(x)}\cdot\dfrac{1}{\Delta x} =Δx0limg(x+Δx)g(x)f(x+Δx)g(x)f(x)g(x)+f(x)g(x)f(x)g(x+Δx)Δx1

    = lim ⁡ Δ x → 0 f ′ ( x ) Δ x ⋅ g ( x ) − f ( x ) ⋅ g ′ ( x ) Δ x g 2 ( x ) ⋅ Δ x \qquad \qquad \qquad \qquad =\lim\limits_{\Delta x\rightarrow0}\dfrac{f'(x)\Delta x\cdot g(x)-f(x)\cdot g'(x)\Delta x}{g^2(x)\cdot \Delta x} =Δx0limg2(x)Δxf(x)Δxg(x)f(x)g(x)Δx

    = f ′ ( x ) g ( x ) − f ( x ) g ′ ( x ) g 2 ( x ) \qquad \qquad \qquad \qquad =\dfrac{f'(x)g(x)-f(x)g'(x)}{g^2(x)} =g2(x)f(x)g(x)f(x)g(x)

  • 相关阅读:
    HCNP Routing&Switching之端口隔离
    当新手小白有了一块【香橙派OrangePi AIpro】.Demo
    深入理解python中的subprocess模块
    @RequestBody详解:用于获取请求体中的Json格式参数
    基于VR元宇宙技术搭建林业生态模拟仿真教学系统
    Spring事务管理与模板对象
    23111709[含文档+PPT+源码等]计算机毕业设计基于Spring Boot智能无人仓库管理-进销存储
    什么是CRM系统?为什么现代企业都在使用?
    万字长文详解Java线程池面试题
    5. 最长回文子串
  • 原文地址:https://blog.csdn.net/tanjunming2020/article/details/128086168