• 大数据下一代变革之必研究数据湖技术Hudi原理实战双管齐下-下


    集成Spark开发

    Spark编程读写示例

    通过IDE如Idea编程实质上和前面的spark-shell和spark-sql相似,其他都是Spark编程的知识,下面以scala语言为示例,idea新建scala的maven项目

    image-20221124110101979

    pom文件添加如下依赖

    <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd">
      <modelVersion>4.0.0</modelVersion>
      <groupId>cn.itxs</groupId>
      <artifactId>hoodie-spark-demo</artifactId>
      <version>1.0</version>
    
      <properties>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <scala.version>2.12.10</scala.version>
        <scala.binary.version>2.12</scala.binary.version>
        <spark.version>3.3.0</spark.version>
        <hoodie.version>0.12.1</hoodie.version>
        <hadoop.version>3.3.4</hadoop.version>
      </properties>
    
      <dependencies>
        <dependency>
          <groupId>org.scala-lang</groupId>
          <artifactId>scala-library</artifactId>
          <version>${scala.version}</version>
        </dependency>
    
        <dependency>
          <groupId>org.apache.spark</groupId>
          <artifactId>spark-core_${scala.binary.version}</artifactId>
          <version>${spark.version}</version>
          <scope>provided</scope>
        </dependency>
    
        <dependency>
          <groupId>org.apache.spark</groupId>
          <artifactId>spark-sql_${scala.binary.version}</artifactId>
          <version>${spark.version}</version>
          <scope>provided</scope>
        </dependency>
    
        <dependency>
          <groupId>org.apache.spark</groupId>
          <artifactId>spark-hive_${scala.binary.version}</artifactId>
          <version>${spark.version}</version>
          <scope>provided</scope>
        </dependency>
    
        <dependency>
          <groupId>org.apache.hadoop</groupId>
          <artifactId>hadoop-client</artifactId>
          <version>${hadoop.version}</version>
          <scope>provided</scope>
        </dependency>
    
        <dependency>
          <groupId>org.apache.hudi</groupId>
          <artifactId>hudi-spark3.3-bundle_${scala.binary.version}</artifactId>
          <version>${hoodie.version}</version>
          <scope>provided</scope>
        </dependency>
      </dependencies>
    
      <build>
        <plugins>
          <plugin>
            <groupId>org.apache.maven.plugins</groupId>
            <artifactId>maven-compiler-plugin</artifactId>
            <version>3.10.1</version>
            <configuration>
              <source>1.8</source>
              <target>1.8</target>
              <encoding>${project.build.sourceEncoding}</encoding>
            </configuration>
          </plugin>
          <plugin>
            <groupId>org.scala-tools</groupId>
            <artifactId>maven-scala-plugin</artifactId>
            <version>2.15.2</version>
            <executions>
              <execution>
                <goals>
                  <goal>compile</goal>
                  <goal>testCompile</goal>
                </goals>
              </execution>
            </executions>
          </plugin>
          <plugin>
            <groupId>org.apache.maven.plugins</groupId>
            <artifactId>maven-shade-plugin</artifactId>
            <version>3.2.4</version>
            <executions>
              <execution>
                <phase>package</phase>
                <goals>
                  <goal>shade</goal>
                </goals>
                <configuration>
                  <filters>
                    <filter>
                      <artifact>*:*</artifact>
                      <excludes>
                        <exclude>META-INF/*.SF</exclude>
                        <exclude>META-INF/*.DSA</exclude>
                        <exclude>META-INF/*.RSA</exclude>
                      </excludes>
                    </filter>
                  </filters>
                </configuration>
              </execution>
            </executions>
          </plugin>
        </plugins>
      </build>
    </project>
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111

    创建常量对象

    object Constant {
        val HUDI_STORAGE_PATH = "hdfs://192.168.5.53:9000/tmp/"
    }
    
    • 1
    • 2
    • 3

    插入hudi数据

    package cn.itxs
    
    import org.apache.spark.sql.SparkSession
    import org.apache.spark.SparkConf
    import org.apache.hudi.QuickstartUtils._
    import scala.collection.JavaConversions._
    import org.apache.spark.sql.SaveMode._
    import org.apache.hudi.DataSourceWriteOptions._
    import org.apache.hudi.config.HoodieWriteConfig._
    
    object InsertDemo {
      def main(args: Array[String]): Unit = {
        val sparkConf = new SparkConf()
          .setAppName(this.getClass.getSimpleName)
          .setMaster("local[*]")
          .set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
    
        val sparkSession = SparkSession.builder()
          .config(sparkConf)
          .enableHiveSupport()
          .getOrCreate()
    
        val tableName = "hudi_trips_cow_idea"
        val basePath =  Constant.HUDI_STORAGE_PATH+tableName
        val dataGen = new DataGenerator
        val inserts = convertToStringList(dataGen.generateInserts(10))
    
        val df = sparkSession.read.json(sparkSession.sparkContext.parallelize(inserts,2))
        df.write.format("hudi").
          options(getQuickstartWriteConfigs).
          option(PRECOMBINE_FIELD.key(), "ts").
          option(RECORDKEY_FIELD.key(), "uuid").
          option(PARTITIONPATH_FIELD.key(), "partitionpath").
          option(TBL_NAME.key(), tableName).
          mode(Overwrite).
          save(basePath)
    
        sparkSession.close()
      }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40

    由于依赖中scope是配置为provided,因此运行配置中勾选下面这项

    image-20221124111557461

    运行InsertDemo程序写入hudi数据

    image-20221124111827746

    运行ReadDemo程序读取hudi数据

    image-20221124112658848

    通过mvn clean package打包后上传运行

    spark-submit \
    --class cn.itxs.ReadDemo \
    /home/commons/spark-3.3.0-bin-hadoop3/appjars/hoodie-spark-demo-1.0.jar
    
    • 1
    • 2
    • 3

    DeltaStreamer

    HoodieDeltaStreamer实用程序(hudi-utilities-bundle的一部分)提供了从不同源(如DFS或Kafka)中获取的方法,具有以下功能。

    • 从Kafka的新事件,从Sqoop的增量导入或输出HiveIncrementalPuller或DFS文件夹下的文件。
    • 支持json, avro或自定义记录类型的传入数据。
    • 管理检查点、回滚和恢复。
    • 利用来自DFS或Confluent模式注册中心的Avro模式。
    • 支持插入转换。
    # 拷贝hudi-utilities-bundle_2.12-0.12.1.jar到spark的jars目录
    cp /home/commons/hudi-release-0.12.1/packaging/hudi-utilities-bundle/target/hudi-utilities-bundle_2.12-0.12.1.jar jars/
    # 查看帮助文档,参数非常多,可以在有需要使用的时候查阅
    spark-submit --class org.apache.hudi.utilities.deltastreamer.HoodieDeltaStreamer /home/commons/spark-3.3.0-bin-hadoop3/jars/hudi-utilities-bundle_2.12-0.12.1.jar --help
    
    • 1
    • 2
    • 3
    • 4

    image-20221124170418737

    该工具采用层次结构组成的属性文件,并具有提取数据、密钥生成和提供模式的可插入接口。在hudi-下提供了从kafka和dfs中摄取的示例配置

    image-20221124152601371

    接下里以File Based Schema Provider和JsonKafkaSoiurce为示例演示如何使用

    # 创建topic
    bin/kafka-topics.sh --zookeeper zk1:2181,zk2:2181,zk3:2181 --create --partitions 1 --replication-factor 1 --topic data_test
    
    • 1
    • 2

    然后编写demo程序持续向这个kafka的topic发送消息

    image-20221124152926618

    # 创建一个配置文件目录
    mkdir /home/commons/hudi-properties
    # 拷贝示例配置文件
    cp hudi-utilities/src/test/resources/delta-streamer-config/kafka-source.properties /home/commons/hudi-properties/
    cp hudi-utilities/src/test/resources/delta-streamer-config/base.properties /home/commons/hudi-properties/
    
    • 1
    • 2
    • 3
    • 4
    • 5

    定义avro所需的schema文件包括source和target,创建source文件 vim source-json-schema.avsc

    {
      "type" : "record",
      "name" : "Profiles",
      "fields" : [
          {
            "name" : "id",
            "type" : "long"
          }, {
            "name" : "name",
            "type" : "string"
          }, {
             "name" : "age",
             "type" : "int"
          },  {
            "name" : "partitions",
            "type" : "int"
          }
      ]
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19

    拷贝一份为target文件

    cp source-json-schema.avsc target-json-schema.avsc
    
    • 1

    修改kafka-source.properties的配置如下

    include=hdfs://hadoop2:9000/hudi-properties/base.properties
    # Key fields, for kafka example
    hoodie.datasource.write.recordkey.field=id
    hoodie.datasource.write.partitionpath.field=partitions
    # schema provider configs
    #hoodie.deltastreamer.schemaprovider.registry.url=http://localhost:8081/subjects/impressions-value/versions/latest
    hoodie.deltastreamer.schemaprovider.source.schema.file=hdfs://hadoop2:9000/hudi-properties/source-json-schema.avsc
    hoodie.deltastreamer.schemaprovider.target.schema.file=hdfs://hadoop2:9000/hudi-properties/target-json-schema.avsc
    # Kafka Source
    #hoodie.deltastreamer.source.kafka.topic=uber_trips
    hoodie.deltastreamer.source.kafka.topic=data_test
    #Kafka props
    bootstrap.servers=kafka1:9092,kafka2:9092,kafka3:9092
    auto.offset.reset=earliest
    #schema.registry.url=http://localhost:8081
    group.id=mygroup
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16

    将本地hudi-properties文件夹上传到HDFS

    cd ..
    hdfs dfs -put hudi-properties/ /
    
    • 1
    • 2

    image-20221124160153231

    # 运行导入命令
    spark-submit \
    --class org.apache.hudi.utilities.deltastreamer.HoodieDeltaStreamer \
    /home/commons/spark-3.3.0-bin-hadoop3/jars/hudi-utilities-bundle_2.12-0.12.1.jar \
      --props hdfs://hadoop2:9000/hudi-properties/kafka-source.properties \
      --schemaprovider-class org.apache.hudi.utilities.schema.FilebasedSchemaProvider \
      --source-class org.apache.hudi.utilities.sources.JsonKafkaSource \
      --source-ordering-field id \
      --target-base-path hdfs://hadoop2:9000/tmp/hudi/user_test \
      --target-table user_test \
      --op BULK_INSERT \
      --table-type MERGE_ON_READ
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12

    image-20221124171559468

    查看hdfs目录已经有表目录和分区目录

    image-20221124171723635

    image-20221124171826926

    通过spark-sql查询从kafka摄取的数据

    use hudi_spark;
    create table user_test using hudi
    location 'hdfs://hadoop2:9000/tmp/hudi/user_test';
    select * from user_test limit 10;
    
    • 1
    • 2
    • 3
    • 4

    image-20221124172628568

    集成Flink

    环境准备

    # 解压进入flink目录,这里我就用之前flink的环境,详细可以查看之前关于flink的文章
    cd /home/commons/flink-1.15.1
    # 拷贝编译好的jar到flink的lib目录
    cp /home/commons/hudi-release-0.12.1/packaging/hudi-flink-bundle/target/hudi-flink1.15-bundle-0.12.1.jar lib/
    
    • 1
    • 2
    • 3
    • 4

    image-20221124173958802

    # 拷贝guava包,解决依赖冲突
    cp /home/commons/hadoop/share/hadoop/common/lib/guava-27.0-jre.jar lib/
    # 配置hadoop环境变量和启动hadoop
    export HADOOP_CLASSPATH=`$HADOOP_HOME/bin/hadoop classpath`
    
    • 1
    • 2
    • 3
    • 4

    sql-clent使用

    启动

    修改配置文件 vi conf/flink-conf.yaml

    classloader.check-leaked-classloader: false
    taskmanager.numberOfTaskSlots: 4
    state.backend: rocksdb
    state.checkpoints.dir: hdfs://hadoop2:9000/checkpoints/flink
    state.backend.incremental: true
    execution.checkpointing.interval: 5min
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • local 模式

    修改workers文件,也可以多配制几个(伪分布式或完全分布式),官方提供示例是4个

    localhost
    localhost
    localhost
    
    • 1
    • 2
    • 3
    # 在本机上启动三个TaskManagerRunner和一个Standalone伪分布式集群
    ./bin/start-cluster.sh 
    # 查看进程确认
    jps -l
    
    • 1
    • 2
    • 3
    • 4

    image-20221125092325266

    # 启动内嵌的flink sql客户端
    ./bin/sql-client.sh embedded
    show databases;
    show tables;
    
    • 1
    • 2
    • 3
    • 4

    image-20221125092721153

    • yarn-session 模式

      • 解决依赖冲突问题
      # 拷贝jar到flink的lib目录
      cp /home/commons/hadoop/share/hadoop/mapreduce/hadoop-mapreduce-client-core-3.3.4.jar lib/
      
      • 1
      • 2
      • 启动yarn-session
      # 先停止上面启动Standalone伪分布式集群
      ./bin/stop-cluster.sh
      # 启动yarn-session分布式集群
      ./bin/yarn-session.sh --detached
      
      • 1
      • 2
      • 3
      • 4

      image-20221125183041918

      查看yarn上已经有一个Flink session集群job, ID为application_1669357770610_0015

      image-20221125183108137

      查看Flink的Web UI可用TaskSlots为0,可确认已切换为yarn管理资源非分配

      image-20221125180205029

      • 启动sql-client
      # 由于使用内嵌模式管理元数据,元数据是保存在内存中,关闭sql-client后则元数据也会消失,生产环境建议使用如Hive元数据管理方式,后面再做配置
      ./bin/sql-client.sh embedded -s yarn-session
      show databases;
      show tables;
      
      • 1
      • 2
      • 3
      • 4

    插入数据

    CREATE TABLE t1(
      uuid VARCHAR(20),
      name VARCHAR(10),
      age INT,
      ts TIMESTAMP(3),
      `partition` VARCHAR(20),
      PRIMARY KEY(uuid) NOT ENFORCED
    )
    PARTITIONED BY (`partition`)
    WITH (
      'connector' = 'hudi',
      'path' = 'hdfs://hadoop1:9000/tmp/hudi_flink/t1',
      'table.type' = 'MERGE_ON_READ' -- 创建一个MERGE_ON_READ表,默认情况下是COPY_ON_WRITE表
    );
    -- 插入数据
    INSERT INTO t1 VALUES
      ('id1','Danny',23,TIMESTAMP '2022-11-25 00:00:01','par1'),
      ('id2','Stephen',33,TIMESTAMP '2022-11-25 00:00:02','par1'),
      ('id3','Julian',53,TIMESTAMP '2022-11-25 00:00:03','par2'),
      ('id4','Fabian',31,TIMESTAMP '2022-11-25 00:00:04','par2'),
      ('id5','Sophia',18,TIMESTAMP '2022-11-25 00:00:05','par3'),
      ('id6','Emma',20,TIMESTAMP '2022-11-25 00:00:06','par3'),
      ('id7','Bob',44,TIMESTAMP '2022-11-25 00:00:07','par4'),
      ('id8','Han',56,TIMESTAMP '2022-11-25 00:00:08','par4');
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24

    image-20221128092047672

    查看Flink Web UI Job的信息

    image-20221128091855135

    image-20221128092026837

    # 查询数据
    select * from t1;
    
    • 1
    • 2

    image-20221128092459685

    # 更新数据
    INSERT INTO t1 VALUES
      ('id1','Danny',28,TIMESTAMP '2022-11-25 00:00:01','par1');
    # 查询数据
    select * from t1;
    
    • 1
    • 2
    • 3
    • 4
    • 5

    image-20221128133630036

    流式读取

    -- 设置结果模式为tableau,在CLI中直接显示结果;另外还有table和changelog;changelog模式可以获取+I,-U之类动作数据;
    set 'sql-client.execution.result-mode' = 'tableau';
    CREATE TABLE sourceT (
      uuid varchar(20),
      name varchar(10),
      age int,
      ts timestamp(3),
      `partition` varchar(20),
      PRIMARY KEY(uuid) NOT ENFORCED
    ) WITH (
      'connector' = 'datagen',
      'rows-per-second' = '1'
    );
    
    CREATE TABLE t2 (
      uuid varchar(20),
      name varchar(10),
      age int,
      ts timestamp(3),
      `partition` varchar(20),
      PRIMARY KEY(uuid) NOT ENFORCED
    )
    WITH (
    'connector' = 'hudi', 
    'path' = 'hdfs://hadoop1:9000/tmp/hudi_flink/t2', 
    'table.type' = 'MERGE_ON_READ',
    'read.streaming.enabled' = 'true',
    'read.streaming.check-interval' = '4'
    );
    
    insert into t2 select * from sourceT;
    select * from t2;
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32

    image-20221128140741157

    image-20221128143313273

    Bucket索引

    在0.11.0增加了一种高效、轻量级的索引类型bucket index,其为字节贡献回馈给hudi社区。

    • Bucket Index是一种Hash分配方式,根据指定的索引字段,计算hash值,然后结合Bucket个数,均匀分配到具体的文件中。Bucket Index支持大数据量场景下的更新,Bucket Index也可以对数据进行分桶存储,但是对于桶数的计算是需要根据当前数据量的大小进行评估的,如果后续需要re-hash的话成本也会比较高。在这里我们预计通过建立Extensible Hash Index来提高哈希索引的可扩展能力。
    • 要使用此索引,请将索引类型设置为BUCKET并设置hoodie.storage.layout.partitioner.class为org.apache.hudi.table.action.commit.SparkBucketIndexPartitioner。对于 Flink,设置index.type=BUCKET.
    • 该方式相比于BloomIndex在元素定位性能高很多,缺点是Bucket个数无法动态扩展。另外Bucket不适合于COW表,否则会导致写放大更严重。
    • 实时入湖写入的性能要求高的场景建议采用Bucket索引。

    Hudi Catalog

    前面基于内容管理hudi元数据的方式每次重启sql客户端就丢掉了,Hudi Catalog则是可以持久化元数据;Hudi Catalog支持多种模式,包括dfs和hms,hudi还可以直接集群hive使用,后续再一步步演示,现在先简单看下dfs模式的Hudi Catalog,先添加启动sql文件,vim conf/sql-client-init.sql

    create catalog hudi_catalog 
    with(
    'type' = 'hudi',
    'mode' = 'dfs',
    'catalog.path'='/tmp/hudi_catalog'
    );
    use catalog hudi_catalog;
    
    创建目录并启动,建表测试
    
    ~~~shell
    hdfs dfs -mkdir /tmp/hudi_catalog
    ./bin/sql-client.sh embedded -i conf/sql-client-init.sql -s yarn-session
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13

    image-20221128183632702

    查看hdfs的数据如下,退出客户端后重新登录客户端还可以查到上面的hudi_catalog及其库和表的数据。

    image-20221128183822461

    本人博客网站IT小神 www.itxiaoshen.com

  • 相关阅读:
    阿里云优惠券如何领取(阿里云在哪领取优惠券)
    [Android]Android P(9) WIFI学习笔记 - 扫描 (3)
    AN动画基础——元件,组件,散件
    基于SSM技术的oa办公管理系统的设计与实现毕业设计源码100934
    uvm白皮书练习_ch2_ch222加入factory机制
    秒验丨Android端SDK API使用说明
    xcode Simulator 手动安装
    【Typroa使用】Typroa+PicGo-Core(command line)+gitee免费图片上传配置
    eBPF(三)
    Python基础(一)
  • 原文地址:https://blog.csdn.net/qq_20949471/article/details/128089510