• 决策树(Decision Trees)


    决策树(Decision Trees)

    1. Training and Visualizing a Decision Tree

    can perform both classification and regression tasks, and even multioutput tasks

    tree_clf = DecisionTreeClassifier(max_depth=2)
    export_graphviz(
    	tree_clf,
    	out_file=image_path("iris_tree.dot"),
    	feature_names=iris.feature_names[2:],
    	class_names=iris.target_names,
    	rounded=True,
    	filled=True
    )
    $ dot -Tpng iris_tree.dot -o iris_tree.png
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10

    2. Making Predictions

    • require very little data preparation.
    • don’t require feature scaling or centering at all
    • algorithm
      CART, binary trees
      ID3, mul-children trees
    • etimating class probabilities
      根据叶子节点的value,就可以输出每个分类的概率 p k p_k pk
    • gini 节点的纯洁程度,0最纯洁
      G i n i i = 1 − ∑ k = 1 n p i , k 2 Gini_i=1-\sum_{k=1}^{n}p_{i,k}^2 Ginii=1k=1npi,k2
      p i , k p_{i,k} pi,k表示第i个节点上,第k类出现的概率

    3. The CART Training Algorithm

    递归的为每个节点寻找最好的划分特征k和划分特征的阈值t,CART Cost Function For classification
    J ( k , t k ) = m l e f t m G l e f t + m r i g h t m G r i g h t      ( G    m e a s u r e s    t h e    i m p u r i t y    o f    t h e    s u b s e t ) J(k, t_k)=\frac{m_{left}}{m}G_{left} + \frac{m_{right}}{m}G_{right} \;\; (G \; measures \; the \; impurity \; of \; the \; subset) J(k,tk)=mmleftGleft+mmrightGright(Gmeasurestheimpurityofthesubset)
    处了GINI指数可以作为G,香农信息熵也是一种方法
    H i = − ∑ k = 1 , p i , k ≠ 0 n p i , k l o g ( p i , k ) H_i=-\sum_{k=1,p_{i,k}\neq 0}^{n}p_{i,k}log(p_{i,k}) Hi=k=1,pi,k=0npi,klog(pi,k)
    默认选择GINI指数,计算复杂度低一些,二者训练出来的树差不多,Gini impurity tends to isolate the most frequent class in its own branch of the tree, while entropy tends to produce slightly more balanced trees

    • CART 全称是 Classifcation And Regression Tree
    • CART is a greedy algorithm 贪心算法
      1. A greedy algorithm often produces a reasonably good solution,
      2. but it is not guaranteed to be the optimal solution.
      3. finding the optimal tree is known to be an NP-Complete problem
      4. it requires O(exp(m)) time
    • mathematical question
      1. P is the set of problems that can be solved in polynomial time
      2. NP is the set of problems whose solutions can be verified in polynomial time
      3. NP-Hard problem is a problem to which any NP problem can be reduced in polynomial time.
      4. An NP-Complete problem is both NP and NP-Hard

    4. Regularization Hyperparameters

    • a nonparametric model
      the number of parameters is not determined prior to training
    • a few parameters restrict the shape of the Decision Tree
      1. min_samples_split
      2. min_samples_leaf
      3. min_weight_fraction_leaf, same as min_samples_leaf but expressed as a fraction of the total number of eighted instances
      4. max_leaf_nodes
      5. max_features, maximum number of features that are evaluated for splitting at each node
    • increasing min_* hyperparameters or reducing max_* hyperparameters will regularize the model
    • 另可以先不加任何约束训练一棵树,完成后再对树进行裁剪的方式正则化
    • The computational complexity of training a Decision Tree is O(n × m log(m))

    5. Regression

    将混乱程度修改为均值平方差

    from sklearn.tree import DecisionTreeRegressor
    # setting min_samples_leaf=10 to obviously overfitting
    tree_reg = DecisionTreeRegressor(max_depth=2)
    tree_reg.fit(X, y)
    
    • 1
    • 2
    • 3
    • 4

    返回的value值,是这一个区间内的所有samples的平均值

    6. Instability 不确定性

    • 优点 a lot going
      1. simple to understand and interpret
      2. easy to use
      3. versatile, and powerful
    • 缺点 a few limitations
      1. orthogonal decision boundaries 对非线性的样本不好处理
      2. very sensitive to small variations in the training data

    @ 学必求其心得,业必贵其专精

  • 相关阅读:
    mysql 安装使用
    【Lua面试】 迭代器和泛型For
    Linux 新建 python 文件
    【Vue实战】基于Vue的九宫格在线抽奖附源代码
    kunpeng的aarch64架构cpu、openeuler系统、昇腾服务器适配文档转换功能(doc转docx、ppt转pptx)
    怎么通过Fiddler对APP进行抓包?以及高级应用场景分析
    CentOS 同时安装多个版本的Python3
    SpringBoot SpringBoot 开发实用篇 4 数据层解决方案 4.15 ES 文档操作
    java8 Optional理解及示例
    css :first-child 和 :first-of-type
  • 原文地址:https://blog.csdn.net/huanghaifeng201213/article/details/128086365