KVM的发展路线就是逐步从软件模拟到硬件辅助,内存虚拟化的本质就是实现客户机虚拟地址 (Guest Virtual Address, GVA) 到宿主机物理地址之间的转换, 其主要发展历程就是从最初的影子页表到硬件辅助实现的EPT/NPT页表,对于影子页表KVM需要为每个客户机的每个进程的页表都要维护一套相应的影子页表, 这会带来较大内存上的额外开销,此外,客户机页表和和影子页表的同步也比较复杂。 因此,Intel 的 EPT(Extent Page Table) 技术和 AMD 的 NPT(Nest Page Table) 技术都对内存虚拟化提供了硬件支持。
对于客户机的内存分配上,KVM提供了ballooning机制,其本质就是可以根据宿主机系统内存使用的紧张程度来动态增加或回收客户机的内存占用。 如果你的云计算环境准备实施oversell,那么这个机制是十分有用的,因为宿主机上的客户机不可能同时满载,这样便可以有效利用物理内存。
如果宿主机上跑着很多相同镜像的客户机,那么这些客户机的内存段是有相同之处的,KVM提供了一个KSM(Kernel Samepage Merging)机制,可以将相同的内存合并。 这就意味着在ballooning机制基础上还能更进一步优化内存使用率。但是KSM的开销也很大,尤其是当客户机的镜像耦合非常低会造成KSM效率非常低,不仅内存合并效果不佳, 还会影响宿主机的系统性能,进而影响所有客户机的性能,需要慎重使用。
此外还有HugePage和Transparent HugePage技术。前者可以给客户机分配一块大内存独占使用,但是因为独占导致很多不灵活,不能在宿主机内存紧张的时候换出; 而后者则是继承了HugePage的优点并弥补了这个缺点。大页技术的使用也需要慎重,如果客户机运行的应用比较依赖内存性能(Redis之流),那么开启这个是值得的。