在 RDD 出现之前, 当时 MapReduce 是比较主流的, 而 MapReduce 如何执行流程如下:

多个 MapReduce 任务之间只能通过磁盘来进行传递数据,很明显的效率低下,再来看 RDD 的处理方式:

整个过程是共享内存的, 而不需要将中间结果存放在分布式文件系统中,这种方式可以在保证容错的前提下, 提供更多的灵活, 更快的执行速度。
RDD 不仅是数据集, 也是编程模型,提供了上层 API, 同时 RDD 的 API 和 jdk8 中 stream 流对集合运算的 API 非常类似,同样也都是各算子,如下:
textFile.filter(StringUtils.isNotBlank) //过滤空内容
.flatMap(_.split(" ")) //根据空格拆分
.map((_, 1)) // 构建新的返回
.foreach(s => println(s._1 + " " + s._2)) //循环
RDD 的算子大致分为两类:
map flatMap filter 等。reduce collect show 等注意:执行 RDD 的时候会进行惰性求值,执行到转换操作的时候,并不会立刻执行,直到遇见了 Action 操作,才会触发真正的执行。
RDD 有三种创建方式,可以通过本地集合直接创建,也可以通过读取外部数据集来创建,还可以通过其它的 RDD 衍生而来:
首先声明 SparkContext:
val conf = new SparkConf().setAppName("spark").setMaster("local[*]")
val sc = new SparkContext(conf)
SparkConf conf = new SparkConf().setAppName("spark").setMaster("local[*]");
JavaSparkContext sc = new JavaSparkContext(conf);
from pyspark import SparkConf, SparkContext, StorageLevel
import findspark
if __name__ == '__main__':
findspark.init()
conf = SparkConf().setAppName('spark').setMaster('local[*]')
sc = SparkContext(conf=conf)
val rdd1 = sc.parallelize(Seq("abc", "abc", "fff dd", "ee,pp", ""))
//指定分区
val rdd2 = sc.parallelize(Seq("abc", "abc", "fff dd", "ee,pp", ""), 5)
JavaRDD<String> rdd1 = sc.parallelize(Arrays.asList("abc", "abc", "fff dd", "ee,pp", ""));
//指定分区
JavaRDD<String> rdd2 = sc.parallelize(Arrays.asList("abc", "abc", "fff dd", "ee,pp", ""), 5);
rdd1 = sc.parallelize(["abc", "abc", "fff dd", "ee,pp", ""])
#
rdd2 = sc.parallelize(["abc", "abc", "fff dd", "ee,pp", ""], 5)
//读取本地文件
val rdd3 = sc.textFile("D:/test/spark/input3/words.txt")
//读取本地文件,指定分区
val rdd4 = sc.textFile("D:/test/spark/input3/words.txt", 5)
//读取 HDFS 文件
val rdd5 = sc.textFile("hdfs://test/spark/input3/words.txt")
//读取文件同时拿到文件名
val rdd6 = sc.textFile("hdfs://test/spark/input3/")
//读取本地文件
JavaRDD<String> rdd3 = sc.textFile("D:/test/spark/input3/words.txt");
//读取本地文件,指定分区
JavaRDD<String> rdd4 = sc.textFile("D:/test/spark/input3/words.txt", 5);
//读取 HDFS 文件
JavaRDD<String> rdd5 = sc.textFile("hdfs://test/spark/input3/words.txt");
//读取文件同时拿到文件名
JavaRDD<String> rdd6 = sc.textFile("hdfs://test/spark/input3/");
# 读取本地文件
rdd3 = sc.textFile("D:/test/spark/input3/words.txt")
#读取本地文件,指定分区
rdd4 = sc.textFile("D:/test/spark/input3/words.txt", 5)
#读取 HDFS 文件
rdd5 = sc.textFile("hdfs://test/spark/input3/words.txt")
#读取文件同时拿到文件名
rdd6 = sc.textFile("hdfs://test/spark/input3/")
下面对相关常用算子进行演示。
将 RDD 中的数据 一对一 的转为另一种形式:
例如:
val num = sc.parallelize(Seq(1, 2, 3, 4, 5))
println(
num.map(_+1).collect().toList
)
JavaRDD<Integer> num = sc.parallelize(Arrays.asList(1, 2, 3, 4, 5));
System.out.println(
num.map(i -> i + 1).collect()
);
num = sc.parallelize((1, 2, 3, 4, 5))
print(
num.map(lambda i:i+1).collect()
)

和 Map 算子类似,但是 FlatMap 是一对多,并都转化为一维数据:
例如:
val text = sc.parallelize(Seq("abc def", "hello word", "dfg,okh", "he,word"))
println(
text.flatMap(_.split(" ")).flatMap(_.split(",")).collect().toList
)
JavaRDD<String> text = sc.parallelize(Arrays.asList("abc def", "hello word", "dfg,okh", "he,word"));
System.out.println(
text.flatMap(s ->Arrays.asList(s.split(" ")).iterator())
.flatMap(s ->Arrays.asList(s.split(",")).iterator())
.collect()
);
text = sc.parallelize(("abc def", "hello word", "dfg,okh", "he,word"))
print(
text.flatMap(lambda s: s.split(" ")).flatMap(lambda s: s.split(",")).collect()
)

过滤掉不需要的内容:
例如:
val text = sc.parallelize(Seq("hello", "hello", "word", "word"))
println(
text.filter(_.equals("hello")).collect().toList
)
JavaRDD<String> text = sc.parallelize(Arrays.asList("hello", "hello", "word", "word"));
System.out.println(
text.filter(s -> Objects.equals(s,"hello"))
.collect()
);
text = sc.parallelize(("hello", "hello", "word", "word"))
print(
text.filter(lambda s: s == 'hello').collect()
)

和 map 类似,针对整个分区的数据转换,拿到的是每个分区的集合:
例如:
val text = sc.parallelize(Seq("hello", "hello", "word", "word"), 2)
println(
text.mapPartitions(iter => {
iter.map(_ + "333")
}).collect().toList
)
JavaRDD<String> text = sc.parallelize(Arrays.asList("hello", "hello", "word", "word"), 2);
System.out.println(
text.mapPartitions(iter -> {
List<String> list = new ArrayList<>();
iter.forEachRemaining(s -> list.add(s+"333"));
return list.iterator();
}).collect()
);
text = sc.parallelize(("hello", "hello", "word", "word"), 2)
def partition(par):
tmpArr = []
for s in par:
tmpArr.append(s + "333")
return tmpArr
print(
text.mapPartitions(partition).collect()
)

和 mapPartitions 类似, 只是在函数中增加了分区的 Index :
例如:
val text = sc.parallelize(Seq("hello", "hello", "word", "word"), 2)
println(
text.mapPartitionsWithIndex((index, iter) => {
println("当前分区" + index)
iter.map(_ + "333")
}, true).collect().toList
)
JavaRDD<String> text = sc.parallelize(Arrays.asList("hello", "hello", "word", "word"), 2);
System.out.println(
text.mapPartitionsWithIndex((index, iter) -> {
System.out.println("当前分区" + index);
List<String> list = new ArrayList<>();
iter.forEachRemaining(s -> list.add(s + "333"));
return list.iterator();
}, true).collect()
);
text = sc.parallelize(("hello", "hello", "word", "word"), 2)
def partition(index, par):
print("当前分区" + str(index))
tmpArr = []
for s in par:
tmpArr.append(s + "333")
return tmpArr
print(
text.mapPartitionsWithIndex(partition).collect()
)

只能作用于 Key-Value 型数据, 和 Map 类似, 也是使用函数按照转换数据, 不同点是 MapValues 只转换 Key-Value 中的 Value:
例如:
val text = sc.parallelize(Seq("abc", "bbb", "ccc", "dd"))
println(
text.map((_, "v" + _))
.mapValues(_ + "66")
.collect().toList
)
JavaRDD<String> text = sc.parallelize(Arrays.asList("abc", "bbb", "ccc", "dd"));
System.out.println(
text.mapToPair(s -> new Tuple2<>(s, "v" + s))
.mapValues(v -> v + "66").collect()
);
text = sc.parallelize(("abc", "bbb", "ccc", "dd"))
print(
text.map(lambda s: (s, "v" + s)).mapValues(lambda v: v + "66").collect()
)

可以从一个数据集中抽样出来一部分, 常用作于减小数据集以保证运行速度, 并且尽可能少规律的损失:
第一个参数为withReplacement, 意为是否取样以后是否还放回原数据集供下次使用, 简单的说,如果这个参数的值为 true, 则抽样出来的数据集中可能会有重复。
第二个参数为fraction, 意为抽样的比例。
第三个参数为seed, 随机数种子, 用于 Sample 内部随机生成下标,一般不指定,使用默认值。
例如:
val num = sc.parallelize(Seq(1, 2, 3, 4, 5, 6, 7, 8, 9, 10))
println(
num.sample(true,0.6,2)
.collect().toList
)
JavaRDD<Integer> num = sc.parallelize(Arrays.asList(1, 2, 3, 4, 5, 6, 7, 8, 9, 10));
System.out.println(
num.sample(true, 0.6, 2).collect()
);
num = sc.parallelize((1, 2, 3, 4, 5, 6, 7, 8, 9, 10))
print(
num.sample(True, 0.6, 2).collect()
)

两个数据并集,类似于数据库的 union :
例如:
val text1 = sc.parallelize(Seq("aa", "bb"))
val text2 = sc.parallelize(Seq("cc", "dd"))
println(
text1.union(text2).collect().toList
)
JavaRDD<String> text1 = sc.parallelize(Arrays.asList("aa", "bb"));
JavaRDD<String> text2 = sc.parallelize(Arrays.asList("cc", "dd"));
System.out.println(
text1.union(text2).collect()
);
text1 = sc.parallelize(("aa", "bb"))
text2 = sc.parallelize(("cc", "dd"))
print(
text1.union(text2).collect()
)

两个(key,value)数据集,根据 key 取连接、左连接、右连接,类似数据库中的连接:
例如:
val s1 = sc.parallelize(Seq("1,3", "2,6", "3,8", "4,2"))
val s2 = sc.parallelize(Seq("1,小明", "2,小张", "3,小李", "4,小红", "5,张三"))
val s3 = s1.map(s => (s.split(",")(0), s.split(",")(0)))
val s4 = s2.map(s => (s.split(",")(0), s.split(",")(1)))
println(s3.join(s4).collectAsMap)
println(s3.leftOuterJoin(s4).collectAsMap)
println(s3.rightOuterJoin(s4).collectAsMap)
JavaRDD<String> s1 = sc.parallelize(Arrays.asList("1,3", "2,6", "3,8", "4,2"));
JavaRDD<String> s2 = sc.parallelize(Arrays.asList("1,小明", "2,小张", "3,小李", "4,小红", "5,张三"));
JavaPairRDD<String, String> s3 = s1.mapToPair(s -> new Tuple2<>(s.split(",")[0], s.split(",")[1]));
JavaPairRDD<String, String> s4 = s2.mapToPair(s -> new Tuple2<>(s.split(",")[0], s.split(",")[1]));
System.out.println(s3.join(s4).collectAsMap());
System.out.println(s3.leftOuterJoin(s4).collectAsMap());
System.out.println(s3.rightOuterJoin(s4).collectAsMap());
s1 = sc.parallelize(("1,3", "2,6", "3,8", "4,2"))
s2 = sc.parallelize(("1,小明", "2,小张", "3,小李", "4,小红", "5,张三"))
s3 = s1.map(lambda s:(s.split(",")[0], s.split(",")[0]))
s4 = s2.map(lambda s:(s.split(",")[0], s.split(",")[1]))
print(s3.join(s4).collectAsMap())
print(s3.leftOuterJoin(s4).collectAsMap())
print(s3.rightOuterJoin(s4).collectAsMap())

获取两个集合的交集 :
例如:
val s1 = sc.parallelize(Seq("abc", "dfe", "hello"))
val s2 = sc.parallelize(Seq("fgh", "nbv", "hello", "word", "jkl", "abc"))
println(
s1.intersection(s2).collect().toList
)
JavaRDD<String> s1 = sc.parallelize(Arrays.asList("abc", "dfe", "hello"));
JavaRDD<String> s2 = sc.parallelize(Arrays.asList("fgh", "nbv", "hello", "word", "jkl", "abc"));
System.out.println(
s1.intersection(s2).collect()
);
s1 = sc.parallelize(("abc", "dfe", "hello"))
s2 = sc.parallelize(("fgh", "nbv", "hello", "word", "jkl", "abc"))
print(
s1.intersection(s2).collect()
)

获取差集,a - b ,取 a 集合中 b 集合没有的元素:
例如:
val s1 = sc.parallelize(Seq("abc", "dfe", "hello"))
val s2 = sc.parallelize(Seq("fgh", "nbv", "hello", "word", "jkl", "abc"))
println(
s1.subtract(s2).collect().toList
)
JavaRDD<String> s1 = sc.parallelize(Arrays.asList("abc", "dfe", "hello"));
JavaRDD<String> s2 = sc.parallelize(Arrays.asList("fgh", "nbv", "hello", "word", "jkl", "abc"));
System.out.println(
s1.subtract(s2).collect()
);
s1 = sc.parallelize(("abc", "dfe", "hello"))
s2 = sc.parallelize(("fgh", "nbv", "hello", "word", "jkl", "abc"))
print(
s1.subtract(s2).collect()
)

元素去重,是一个需要 Shuffled 的操作:
例如:
val s1 = sc.parallelize(Seq("abc", "abc", "hello", "hello", "word", "word"))
println(
s1.distinct().collect().toList
)
JavaRDD<String> s1 = sc.parallelize(Arrays.asList("abc", "abc", "hello", "hello", "word", "word"));
System.out.println(
s1.distinct().collect()
);
s1 = sc.parallelize(("abc", "abc", "hello", "hello", "word", "word"))
print(
s1.distinct().collect()
)

只能作用于 Key-Value 型数据,根据 Key 分组生成一个 Tuple,然后针对每个组执行 reduce 算子,传入两个参数,一个是当前值,一个是局部汇总,这个函数需要有一个输出, 输出就是这个 Key 的汇总结果,是一个需要 Shuffled 的操作:
例如:
val s1 = sc.parallelize(Seq("abc", "abc", "hello", "hello", "word", "word"))
println(
s1.map((_, 1))
.reduceByKey(Integer.sum)
.collectAsMap
)
JavaRDD<String> s1 = sc.parallelize(Arrays.asList("abc", "abc", "hello", "hello", "word", "word"));
System.out.println(
s1.mapToPair(s -> new Tuple2<>(s, 1))
.reduceByKey(Integer::sum)
.collectAsMap()
);
s1 = sc.parallelize(("abc", "abc", "hello", "hello", "word", "word"))
print(
s1.map(lambda s: (s, 1))
.reduceByKey(lambda v1, v2: v1 + v2)
.collectAsMap()
)

只能作用于 Key-Value 型数据,根据 Key 分组, 和 ReduceByKey 有点类似, 但是 GroupByKey 并不求聚合, 只是列举 Key 对应的所有 Value,是一个需要 Shuffled 的操作。
GroupByKey 和 ReduceByKey 不同,因为需要列举 Key 对应的所有数据, 所以无法在 Map 端做 Combine, 所以 GroupByKey 的性能并没有 ReduceByKey 好:
例如:
val s1 = sc.parallelize(Seq("abc", "abc", "hello", "hello", "word", "word"))
println(
s1.map((_, 1))
.groupByKey()
.collectAsMap
)
JavaRDD<String> s1 = sc.parallelize(Arrays.asList("abc", "abc", "hello", "hello", "word", "word"));
System.out.println(
s1.mapToPair(s -> new Tuple2<>(s, 1))
.groupByKey()
.collectAsMap()
);
s1 = sc.parallelize(("abc", "abc", "hello", "hello", "word", "word"))
print(
s1.map(lambda s: (s, 1))
.reduceByKey()
.collectAsMap()
)

对数据集按照 Key 进行聚合,groupByKey, reduceByKey 的底层都是 combineByKey
参数:
createCombiner 将 Value 进行初步转换
mergeValue 在每个分区把上一步转换的结果聚合
mergeCombiners 在所有分区上把每个分区的聚合结果聚合
partitioner 可选, 分区函数
mapSideCombiner 可选, 是否在 Map 端 Combine
serializer 序列化器
例如,求取每个人的分数的平均值:
val s1 = sc.parallelize(Seq("小明:15.5", "小明:13.3", "张三:14.4", "张三:37.6", "李四:95.9", "李四:45.4"))
println(
s1.map(s => (s.split(":")(0), s.split(":")(1).toDouble))
.combineByKey(
score => (score, 1),
(c: (Double, Int), newScore: Double) => (c._1 + newScore, c._2 + 1),
(d1: (Double, Int), d2: (Double, Int)) => (d1._1 + d2._1, d1._2 + d2._2)
).map(t => (t._1, t._2._1 / t._2._2))
.collectAsMap
)
JavaRDD<String> s1 = sc.parallelize(Arrays.asList("小明:15.5", "小明:13.3", "张三:14.4", "张三:37.6", "李四:95.9", "李四:45.4"));
System.out.println(
s1.mapToPair(s -> new Tuple2<>(s.split(":")[0], Double.parseDouble(s.split(":")[1])))
.combineByKey(
(Function<Double, Tuple2<Double, Integer>>) score -> new Tuple2(score, 1),
(Function2<Tuple2<Double, Integer>, Double, Tuple2<Double, Integer>>) (c, newScore) -> new Tuple2<>(c._1 + newScore, c._2 + 1),
(Function2<Tuple2<Double, Integer>, Tuple2<Double, Integer>, Tuple2<Double, Integer>>) (d1, d2) -> new Tuple2<>(d1._1 + d2._1, d1._2 + d2._2))
.mapToPair(t -> new Tuple2(t._1, t._2._1 / t._2._2))
.collectAsMap()
);
s1 = sc.parallelize(("小明:15.5", "小明:13.3", "张三:14.4", "张三:37.6", "李四:95.9", "李四:45.4"))
print(
s1.map(lambda s: (s.split(":")[0], float(s.split(":")[1])))
.combineByKey(lambda score: (score, 1),
lambda c, newScore: (c[0] + newScore, c[1] + 1),
lambda d1, d2: (d1[0] + d2[0], d1[1] + d2[1]))
.map(lambda t: (t[0], t[1][0] / t[1][1]))
.collectAsMap()
)

聚合所有 Key 相同的 Value:
参数
zeroValue 初始值
seqOp 转换每一个值的函数
comboOp 将转换过的值聚合的函数
例如,求取每个人的分数的平均值:
val s1 = sc.parallelize(Seq("小明:15.5", "小明:13.3", "张三:14.4", "张三:37.6", "李四:95.9", "李四:45.4"))
println(
s1.map(s => (s.split(":")(0), s.split(":")(1).toDouble))
.aggregateByKey((0.0, 0))(
(zeroValue, aDouble) => {
(zeroValue._1 + aDouble, zeroValue._2 + 1)
},
(t1, t2) => {
(t1._1 + t2._1, t1._2 + t2._2)
}
).map(t => (t._1, t._2._1 / t._2._2)).collect().toList
)
JavaRDD<String> s1 = sc.parallelize(Arrays.asList("小明:15.5", "小明:13.3", "张三:14.4", "张三:37.6", "李四:95.9", "李四:45.4"));
System.out.println(
s1.mapToPair(s -> new Tuple2<>(s.split(":")[0], Double.parseDouble(s.split(":")[1])))
.aggregateByKey(
new Tuple2<>(0.0, 0),
(Function2<Tuple2<Double, Integer>, Double, Tuple2<Double, Integer>>) (zeroValue, aDouble) -> new Tuple2<>(zeroValue._1 + aDouble, zeroValue._2 + 1),
(Function2<Tuple2<Double, Integer>, Tuple2<Double, Integer>, Tuple2<Double, Integer>>) (t1, t2) -> new Tuple2<>(t1._1 + t2._1, t1._2 + t2._2)
).map(t -> new Tuple2<>(t._1, t._2._1 / t._2._2))
.collect()
);
s1 = sc.parallelize(("小明:15.5", "小明:13.3", "张三:14.4", "张三:37.6", "李四:95.9", "李四:45.4"))
print(
s1.map(lambda s: (s.split(":")[0], float(s.split(":")[1])))
.aggregateByKey((0.0, 0),
lambda zeroValue, aDouble:(zeroValue[0] + aDouble, zeroValue[1] + 1),
lambda t1, t2:(t1[0] + t2[0], t1[1] + t2[1]))
.map(lambda t:(t[0], t[1][0] / t[1][1])).collect()
)

和 ReduceByKey 是一样的, 都是按照 Key 做分组求聚合,但是 FoldByKey 可以指定初始值,可以认为是 AggregateByKey 的简化版本, seqOp 和 combOp 是同一个函数:
参数
zeroValue 初始值
func seqOp 和 combOp 相同, 都是这个参数
例如:
val s1 = sc.parallelize(Seq("abc", "abc", "hello", "hello", "word", "word"))
println(
s1.map((_, 1))
.foldByKey(0)((seroValue, v) => seroValue + v)
.collect().toList
)
JavaRDD<String> s1 = sc.parallelize(Arrays.asList("abc", "abc", "hello", "hello", "word", "word"));
System.out.println(
s1.mapToPair(s -> new Tuple2<>(s, 1))
.foldByKey(0, (seroValue, v) -> seroValue + v).collect()
);
s1 = sc.parallelize(("abc", "abc", "hello", "hello", "word", "word"))
print(
s1.map(lambda s:(s, 1))
.foldByKey(0,lambda seroValue, v: seroValue + v)
.collect()
)

数据排序,同 sortByKey ,但普通的 RDD 没有sortByKey, 只有 Key-Value 的 RDD 才有:
参数
func通过这个函数返回要排序的字段
ascending是否升序
numPartitions分区数
例如:
val s1 = sc.parallelize(Seq("1,3", "2,6", "3,8", "4,2"))
val s2 = s1.map(s => (s.split(",")(0), s.split(",")(1).toInt))
println(
s2.sortBy(_._2,false)
.collectAsMap()
)
println(
s2.sortByKey(false).collectAsMap()
)
JavaRDD<String> s1 = sc.parallelize(Arrays.asList("1,3", "2,6", "3,8", "4,2"));
System.out.println(
s1.map(s -> new Tuple2<>(s.split(",")[0], Integer.parseInt(s.split(",")[1])))
.sortBy(t -> t._2, false, 1)
.collect()
);
System.out.println(
s1.mapToPair(s -> new Tuple2<>(s.split(",")[0], Integer.parseInt(s.split(",")[1])))
.sortByKey(false)
.collect()
);
s1 = sc.parallelize(("1,3", "2,6", "3,8", "4,2"))
s2 = s1.map(lambda s:(s.split(",")[0],int(s.split(",")[1])))
print(
s2.sortBy(lambda t:t[1],False)
.collectAsMap()
)
print(
s2.sortByKey(False)
.collectAsMap()
)

repartition:重新分区,coalesce:减少分区,如果新的分区数量比原分区数大, 必须 Shuffled, 否则重分区无效,repartition 和 coalesce 的不同就在于 coalesce 可以控制是否 Shuffle,repartition 是一个 Shuffled 操作。
例如:
var p1 = sc.parallelize(Seq("abc", "abc", "fff dd", "ee,pp", ""))
println(p1.getNumPartitions)
p1 = p1.repartition(5)
println(p1.getNumPartitions)
p1 = p1.coalesce(3)
println(p1.getNumPartitions)
JavaRDD<String> p1 = sc.parallelize(Arrays.asList("abc", "abc", "fff dd", "ee,pp", ""));
System.out.println(p1.getNumPartitions());
p1 = p1.repartition(5);
System.out.println(p1.getNumPartitions());
p1 = p1.coalesce(3);
System.out.println(p1.getNumPartitions());
p1 = sc.parallelize(("abc", "abc", "fff dd", "ee,pp", ""))
print(p1.getNumPartitions)
p1.repartition(5)
print(p1.getNumPartitions)
p1.coalesce(3)
print(p1.getNumPartitions)
多个 RDD 协同分组, 将多个 RDD 中 Key 相同的 Value 分组:
例如:
val s1 = sc.parallelize(Seq("1,3", "2,6", "3,8", "4,2"))
val s2 = sc.parallelize(Seq("1,小明", "2,小张", "3,小李", "4,小红", "5,张三"))
val s3 = s1.map(s => (s.split(",")(0), s.split(",")(1)))
val s4 = s2.map(s => (s.split(",")(0), s.split(",")(1)))
println(
s3.cogroup(s4).collectAsMap
)
JavaRDD<String> s1 = sc.parallelize(Arrays.asList("1,3", "2,6", "3,8", "4,2"));
JavaRDD<String> s2 = sc.parallelize(Arrays.asList("1,小明", "2,小张", "3,小李", "4,小红", "5,张三"));
JavaPairRDD<String, String> s3 = s1.mapToPair(s -> new Tuple2<>(s.split(",")[0], s.split(",")[1]));
JavaPairRDD<String, String> s4 = s2.mapToPair(s -> new Tuple2<>(s.split(",")[0], s.split(",")[1]));
System.out.println(
s3.cogroup(s4).collectAsMap()
);
s1 = sc.parallelize(("1,3", "2,6", "3,8", "4,2"))
s2 = sc.parallelize(("1,小明", "2,小张", "3,小李", "4,小红", "5,张三"))
s3 = s1.map(lambda s: (s.split(",")[0], s.split(",")[1]))
s4 = s2.map(lambda s: (s.split(",")[0], s.split(",")[1]))
print(
s3.cogroup(s4).collectAsMap()
)

对整个结果集规约, 最终生成一条数据, 是整个数据集的汇总。
reduce 和 reduceByKey 完全不同, reduce 是一个 action, 并不是 Shuffled 操作,本质上 reduce 就是现在每个 partition 上求值, 最终把每个 partition 的结果再汇总。
例如:
var p1 = sc.parallelize(Seq(1, 2, 3, 4, 6))
println(
p1.reduce((_+_))
)
JavaRDD<Integer> p1 = sc.parallelize(Arrays.asList(1, 2, 3, 4, 6));
System.out.println(
p1.reduce(Integer::sum)
);
p1 = sc.parallelize((1, 2, 3, 4, 6))
print(
p1.reduce(lambda i1, i2: i1 + i2)
)

以数组的形式返回数据集中所有元素。
例如:
var p1 = sc.parallelize(Seq(1, 2, 3, 4, 6))
println(
p1.collect()
)
JavaRDD<Integer> p1 = sc.parallelize(Arrays.asList(1, 2, 3, 4, 6));
System.out.println(
p1.collect()
);
p1 = sc.parallelize((1, 2, 3, 4, 6))
print(
p1.collect()
)

数据元素个数:
例如:
var p1 = sc.parallelize(Seq(1, 2, 3, 4, 6))
println(
p1.count()
)
JavaRDD<Integer> p1 = sc.parallelize(Arrays.asList(1, 2, 3, 4, 6));
System.out.println(
p1.count()
);
p1 = sc.parallelize((1, 2, 3, 4, 6))
print(
p1.count()
)

返回第一个元素:
例如:
var p1 = sc.parallelize(Seq(1, 2, 3, 4, 6))
println(
p1.first()
)
JavaRDD<Integer> p1 = sc.parallelize(Arrays.asList(1, 2, 3, 4, 6));
System.out.println(
p1.first()
);
p1 = sc.parallelize((1, 2, 3, 4, 6))
print(
p1.first()
)

求得整个数据集中 Key 以及对应 Key 出现的次数:
例如:
val s1 = sc.parallelize(Seq("abc", "abc", "hello", "hello", "word", "word"))
println(
s1.map((_,1)).countByKey()
)
JavaRDD<String> s1 = sc.parallelize(Arrays.asList("abc", "abc", "hello", "hello", "word", "word"))
System.out.println(
s1.mapToPair(s -> new Tuple2<>(s, 1)).countByKey()
);
s1 = sc.parallelize(("abc", "abc", "hello", "hello", "word", "word"))
print(
s1.map(lambda s: (s, 1)).countByKey()
)

返回前 N 个元素:
例如:
val s1 = sc.parallelize(Seq("abc", "abc", "hello", "hello", "word", "word"))
println(
s1.take(3)
)
JavaRDD<String> s1 = sc.parallelize(Arrays.asList("abc", "abc", "hello", "hello", "word", "word"));
System.out.println(
s1.take(3)
);
s1 = sc.parallelize(("abc", "abc", "hello", "hello", "word", "word"))
print(
s1.take(3)
)

将结果存入 path 对应的目录中:
例如:
val s1 = sc.parallelize(Seq("abc", "abc", "hello", "hello", "word", "word"))
s1.saveAsTextFile("D:/test/output/text/")
JavaRDD<String> s1 = sc.parallelize(Arrays.asList("abc", "abc", "hello", "hello", "word", "word"));
s1.saveAsTextFile("D:/test/output/text/");
s1 = sc.parallelize(("abc", "abc", "hello", "hello", "word", "word"))
s1.saveAsTextFile("D:/test/output/text/")

根据 key 查询对应的 value :
例如:
val s1 = sc.parallelize(Seq("小明:15.5", "小明:13.3", "张三:14.4", "张三:37.6", "李四:95.9", "李四:45.4"))
println(
s1.map(s=>(s.split(":")(0),s.split(":")(1).toDouble))
.lookup("小明").toList
)
JavaRDD<String> s1 = sc.parallelize(Arrays.asList("小明:15.5", "小明:13.3", "张三:14.4", "张三:37.6", "李四:95.9", "李四:45.4"));
System.out.println(
s1.mapToPair(s -> new Tuple2<>(s.split(":")[0], Double.parseDouble(s.split(":")[1])))
.lookup("小明")
);
s1 = sc.parallelize(("小明:15.5", "小明:13.3", "张三:14.4", "张三:37.6", "李四:95.9", "李四:45.4"))
print(
s1.map(lambda s: (s.split(":")[0], float(s.split(":")[1])))
.lookup("小明")
)

对于需要复用的RDD,可以进行缓存,已防止重复计算,持久化主要有三个算子,cache、persist、Checkpoint,其中persist可以指定存储的类型,是硬盘还是内存,cache 底层调用的 persist 默认存储在内存中 ,Checkpoint 则可以存储在 HDFS 中:
例如:
val s1 = sc.parallelize(Seq("小明:15.5", "小明:13.3", "张三:14.4", "张三:37.6", "李四:95.9", "李四:45.4"))
//缓存
s1.cache // 底层调用的 persist
//持久化
s1.persist(StorageLevel.MEMORY_AND_DISK) //使用内存和磁盘(内存不够时才使用磁盘)
s1.persist(StorageLevel.MEMORY_ONLY) //持久化到内存
// Checkpoint 应使用Checkpoint把数据发在HDFS上
sc.setCheckpointDir("/data/spark/") //实际中写HDFS目录
s1.checkpoint()
//清空缓存
s1.unpersist()
JavaRDD<String> s1 = sc.parallelize(Arrays.asList("小明:15.5", "小明:13.3", "张三:14.4", "张三:37.6", "李四:95.9", "李四:45.4"));
//缓存
s1.cache(); // 底层调用的 persist
//持久化
s1.persist(StorageLevel.MEMORY_AND_DISK()); //使用内存和磁盘(内存不够时才使用磁盘)
s1.persist(StorageLevel.MEMORY_ONLY()); //持久化到内存
// Checkpoint 应使用Checkpoint把数据发在HDFS上
sc.setCheckpointDir("/data/spark/");//实际中写HDFS目录
s1.checkpoint();
//清空缓存
s1.unpersist();
s1 = sc.parallelize(("小明:15.5", "小明:13.3", "张三:14.4", "张三:37.6", "李四:95.9", "李四:45.4"))
# 缓存
s1.cache() # 底层调用的persist
# 持久化
s1.persist(StorageLevel.MEMORY_AND_DISK) # 使用内存和磁盘(内存不够时才使用磁盘)
s1.persist(StorageLevel.MEMORY_ONLY) # 持久化到内存
# Checkpoint 使用Checkpoint把数据发在HDFS上
sc.setCheckpointDir("/data/spark/") # 实际中写HDFS目录
s1.checkpoint()
# 清空缓存
s1.unpersist()
支持在所有 不同节点上进行全局累加计算:
例如:
//创建一个计数器/累加器
var ljq = sc.longAccumulator("mycounter")
ljq.add(2)
println(ljq.value)
SparkContext sparkContext = JavaSparkContext.toSparkContext(sc);
//创建一个计数器/累加器
LongAccumulator ljq = sparkContext.longAccumulator("mycounter");
ljq.add(2);
System.out.println(ljq.value());
ljq = sc.accumulator("mycounter")
ljq.add(2)
print(ljq.value)
支持在所有 不同节点上进行全局累加计算:
例如:
val list = Seq(1, 2, 3, 4, 6)
val broadcast = sc.broadcast(list)
val value = broadcast.value
println(value.toList)
List<Integer> list = Arrays.asList(1, 2, 3, 4, 6);
Broadcast<List<Integer>> broadcast = sc.broadcast(list);
List<Integer> value = broadcast.getValue();
System.out.println(value);
list = (1, 2, 3, 4, 6)
broadcast = sc.broadcast(list)
value = broadcast.value
print(value)