在本文中,我们通过一个名为WinBUGS的免费贝叶斯软件,可以很容易地完成基于似然的多变量随机波动率(SV)模型的估计和比较。
最近我们被客户要求撰写关于随机波动率的研究报告,包括一些图形和统计输出。通过拟合每周汇率的双变量时间序列数据,多变量SV模型,包括波动率中的格兰杰因果关系,时变相关性,重尾误差分布,加性因子结构和乘法因子结构来说明想法。
单变量随机波动率(SV)模型为ARCH类型模型提供了有效的替代方案,可以解释波动率的条件和无条件属性。
考虑到多变量SV模型对于描述金融资产收益的动态最有用,我们首先总结一些记录良好的金融资产收益的程式化事实:
资产收益分配是尖峰厚尾特征。
资产收益率波动率集群。
收益率是交叉相关的。
波动性是交叉依赖的。
一种资产格兰杰的波动导致另一种资产的波动。
通常存在较低维度因子结构,可以解释大部分相关性。
相关性是随时间变化的。
除了这七个事实之外,诸如参数空间的维数和协方差矩阵的正半确定性之类的问题具有实际重要性。当我们审查现有模型并介绍我们的新模型时,我们将评论它们处理程式化事实和上述两个问题的适当性。
为了说明替代多变量SV模型之间的差异和联系,我们关注本文中的双变量情况。特别是,我们考虑了九种不同的双变量SV模型(带粗体的首字母缩略词)。此外,这些模型中的大多数都适用于多维变量,而模型