若函数 f ( x ) f(x) f(x)满足
则存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ∈(a,b),使得 f ( b ) − f ( a ) b − a = f ′ ( ξ ) \dfrac{f(b)-f(a)}{b-a}=f'(\xi) b−af(b)−f(a)=f′(ξ)
其实这就是柯西中值定理中 g ( x ) = x g(x)=x g(x)=x的特殊情况。
若 f ( x ) f(x) f(x)在 ( a , b ) (a,b) (a,b)内可导, f ′ ( x ) ≡ 0 f'(x)\equiv0 f′(x)≡0,则 f ( x ) f(x) f(x)在 ( a , b ) (a,b) (a,b)内为常数。
证明:对于
(
a
,
b
)
(a,b)
(a,b)内的任意两点
x
1
<
x
2
x_1
若 f ′ ( x ) = g ′ ( x ) f'(x)=g'(x) f′(x)=g′(x),则 f ( x ) = g ( x ) + C f(x)=g(x)+C f(x)=g(x)+C
证明:令 h ( x ) = f ( x ) − g ( x ) h(x)=f(x)-g(x) h(x)=f(x)−g(x),则 h ′ ( x ) = f ′ ( x ) − g ′ ( x ) = 0 h'(x)=f'(x)-g'(x)=0 h′(x)=f′(x)−g′(x)=0,由推论1得 h ( x ) h(x) h(x)为常数,得证 f ( x ) = g ( x ) + C f(x)=g(x)+C f(x)=g(x)+C
设 f ( x ) f(x) f(x)在 ( a , b ) (a,b) (a,b)上连续,在 ( a , b ) (a,b) (a,b)内可导,
求证:存在 ξ ∈ ( a , b ) \xi\in(a,b) ξ∈(a,b),使得 b f ( b ) − a f ( a ) b − a = ξ f ′ ( ξ ) + f ( ξ ) \dfrac{bf(b)-af(a)}{b-a}=\xi f'(\xi)+f(\xi) b−abf(b)−af(a)=ξf′(ξ)+f(ξ)
证:
\qquad
令
F
(
x
)
=
x
f
(
x
)
F(x)=xf(x)
F(x)=xf(x),
F
(
x
)
F(x)
F(x)在
[
a
,
b
]
[a,b]
[a,b]上连续,在
(
a
,
b
)
(a,b)
(a,b)内可导
\qquad 由拉格朗日中值定理得, ∃ ξ ∈ ( a , b ) \exist\xi\in(a,b) ∃ξ∈(a,b),使得 F ( b ) − F ( a ) b − a = F ′ ( ξ ) \dfrac{F(b)-F(a)}{b-a}=F'(\xi) b−aF(b)−F(a)=F′(ξ)
\qquad 即 b f ( b ) − a f ( a ) b − a = ξ f ′ ( ξ ) + f ( ξ ) \dfrac{bf(b)-af(a)}{b-a}=\xi f'(\xi)+f(\xi) b−abf(b)−af(a)=ξf′(ξ)+f(ξ)
用拉格朗日中值定理证明:
u
a
u
−
1
(
b
−
a
)
<
b
u
−
a
u
<
u
b
u
−
1
(
b
−
a
)
(
0
<
a
<
b
,
u
>
1
)
ua^{u-1}(b-a)1)
uau−1(b−a)<bu−au<ubu−1(b−a)(0<a<b,u>1)
证:
\qquad
令
F
(
x
)
=
x
u
F(x)=x^u
F(x)=xu,
x
∈
(
−
∞
,
+
∞
)
x\in(-\infty,+\infty)
x∈(−∞,+∞),
F
(
x
)
F(x)
F(x)在
[
a
,
b
]
[a,b]
[a,b]上连续,在
(
a
,
b
)
(a,b)
(a,b)内可导
\qquad 由拉格朗日中值定理得, ∃ ξ ∈ ( a , b ) \exist \xi\in(a,b) ∃ξ∈(a,b),使得
F ( b ) − F ( a ) b − a = F ′ ( ξ ) \qquad \dfrac{F(b)-F(a)}{b-a}=F'(\xi) b−aF(b)−F(a)=F′(ξ),即 b u − a u b − a = u ξ u − 1 \dfrac{b^u-a^u}{b-a}=u\xi^{u-1} b−abu−au=uξu−1, b u − a u = u ξ u − 1 ( b − a ) b^u-a^u=u\xi^{u-1}(b-a) bu−au=uξu−1(b−a)
∵ f ( x ) = u x u − 1 ( b − a ) \qquad \because f(x)=ux^{u-1}(b-a) ∵f(x)=uxu−1(b−a)在 [ a , b ] [a,b] [a,b]上是单调递增函数, a < ξ < b a<\xia<ξ<b
∴
f
(
a
)
<
f
(
ξ
)
<
f
(
b
)
\qquad \therefore f(a)
\qquad 得证 u a u − 1 ( b − a ) < b u − a u < u b u − 1 ( b − a ) ua^{u-1}(b-a)uau−1(b−a)<bu−au<ubu−1(b−a)
证明: ∀ x ∈ [ − 1 , 1 ] \forall x\in[-1,1] ∀x∈[−1,1], arcsin x + arccos x = π 2 \arcsin x+\arccos x=\dfrac{\pi}{2} arcsinx+arccosx=2π成立。
证:
\qquad
令
f
(
x
)
=
arcsin
x
+
arccos
x
f(x)=\arcsin x+\arccos x
f(x)=arcsinx+arccosx,
g
(
x
)
=
π
2
g(x)=\dfrac{\pi}{2}
g(x)=2π
f ′ ( x ) = 1 1 − x 2 − 1 1 − x 2 = 0 \qquad f'(x)=\dfrac{1}{\sqrt{1-x^2}}-\dfrac{1}{\sqrt{1-x^2}}=0 f′(x)=1−x21−1−x21=0, g ′ ( x ) = 0 g'(x)=0 g′(x)=0
\qquad 即 f ( x ) = g ( x ) + C f(x)=g(x)+C f(x)=g(x)+C
\qquad 代入 x = 0 x=0 x=0, f ( 0 ) = 0 + arccos 0 = π 2 f(0)=0+\arccos 0=\dfrac{\pi}{2} f(0)=0+arccos0=2π, g ( 0 ) = π 2 g(0)=\dfrac{\pi}{2} g(0)=2π
\qquad 所以 C = 0 C=0 C=0,即 f ( x ) = g ( x ) f(x)=g(x) f(x)=g(x),得证 arcsin x + arccos x = π 2 \arcsin x+\arccos x=\dfrac{\pi}{2} arcsinx+arccosx=2π
拉格朗日中值定理的应用: