• 长时间序列模型DLinear(代码解析)


    前言

    参数设定模块(run_longExp)

    • 首先打开run_longExp.py文件保证在不修改任何参数的情况下,代码可以跑通,这里windows系统需要将代码中--is_training--model_id--model--data参数中required=True选项删除,否则会报错。--num_workers参数需要置为0。
    • 其次需要在项目文件夹下新建子文件夹data用来存放训练数据,可以使用ETTh1数据,这里提供下载地址
    • 运行run_longExp.py训练完成不报错就成功了

    参数含义

    • 下面是各参数含义(注释)
    parser = argparse.ArgumentParser(description='Autoformer & Transformer family for Time Series Forecasting')
    
    # 是否进行训练
    parser.add_argument('--is_training', type=int, default=1, help='status')
    # 模型前缀
    parser.add_argument('--model_id', type=str, default='test', help='model id')
    # 选择模型(可选模型有Autoformer, Informer, Transformer,DLinear,NLinear)
    parser.add_argument('--model', type=str, default='DLinear',
                        help='model name, options: [Autoformer, Informer, Transformer]')
    
    # 数据选择
    parser.add_argument('--data', type=str, default='ETTh1', help='dataset type')
    # 数据存放路径
    parser.add_argument('--root_path', type=str, default='./data/', help='root path of the data file')
    # 数据完整名称
    parser.add_argument('--data_path', type=str, default='ETTh1.csv', help='data file')
    # 预测类型(多变量预测、单变量预测、多元预测单变量)
    parser.add_argument('--features', type=str, default='M',
                        help='forecasting task, options:[M, S, MS]; M:multivariate predict multivariate, S:univariate predict univariate, MS:multivariate predict univariate')
    # 如果选择单变量预测或多元预测单变量,需要指定预测的列
    parser.add_argument('--target', type=str, default='OT', help='target feature in S or MS task')
    # 数据重采样格式
    parser.add_argument('--freq', type=str, default='h',
                        help='freq for time features encoding, options:[s:secondly, t:minutely, h:hourly, d:daily, b:business days, w:weekly, m:monthly], you can also use more detailed freq like 15min or 3h')
    # 模型存放文件夹
    parser.add_argument('--checkpoints', type=str, default='./checkpoints/', help='location of model checkpoints')
    
    # 时间窗口长度
    parser.add_argument('--seq_len', type=int, default=96, help='input sequence length')
    # 先验序列长度
    parser.add_argument('--label_len', type=int, default=48, help='start token length')
    # 要预测的序列长度
    parser.add_argument('--pred_len', type=int, default=96, help='prediction sequence length')
    
    
    # 针对DLinear是否为每个变量(通道)单独建立一个线性层
    parser.add_argument('--individual', action='store_true', default=False, help='DLinear: a linear layer for each variate(channel) individually')
    
    # 嵌入策略选择
    parser.add_argument('--embed_type', type=int, default=0, help='0: default 1: value embedding + temporal embedding + positional embedding 2: value embedding + temporal embedding 3: value embedding + positional embedding 4: value embedding')
    # 编码器default参数为特征列数
    parser.add_argument('--enc_in', type=int, default=7, help='encoder input size') # DLinear with --individual, use this hyperparameter as the number of channels
    # 解码器default参数与编码器相同
    parser.add_argument('--dec_in', type=int, default=7, help='decoder input size')
    parser.add_argument('--c_out', type=int, default=7, help='output size')
    # 模型宽度
    parser.add_argument('--d_model', type=int, default=512, help='dimension of model')
    # 多头注意力机制头数
    parser.add_argument('--n_heads', type=int, default=8, help='num of heads')
    # 模型中encoder层数
    parser.add_argument('--e_layers', type=int, default=2, help='num of encoder layers')
    # 模型中decoder层数
    parser.add_argument('--d_layers', type=int, default=1, help='num of decoder layers')
    # 全连接层神经元个数
    parser.add_argument('--d_ff', type=int, default=2048, help='dimension of fcn')
    # 窗口平均线的窗口大小
    parser.add_argument('--moving_avg', type=int, default=25, help='window size of moving average')
    # 采样因子数
    parser.add_argument('--factor', type=int, default=1, help='attn factor')
    # 是否需要序列长度衰减
    parser.add_argument('--distil', action='store_false',
                        help='whether to use distilling in encoder, using this argument means not using distilling',
                        default=True)
    # drop_out率
    parser.add_argument('--dropout', type=float, default=0.05, help='dropout')
    # 时间特征编码方式
    parser.add_argument('--embed', type=str, default='timeF',
                        help='time features encoding, options:[timeF, fixed, learned]')
    # 激活函数
    parser.add_argument('--activation', type=str, default='gelu', help='activation')
    # 是否输出attention
    parser.add_argument('--output_attention', action='store_true', help='whether to output attention in ecoder')
    # 是否进行预测
    parser.add_argument('--do_predict', action='store_false', help='whether to predict unseen future data')
    
    # 多线程
    parser.add_argument('--num_workers', type=int, default=0, help='data loader num workers')
    # 训练轮数
    parser.add_argument('--itr', type=int, default=1, help='experiments times')
    # 训练迭代次数
    parser.add_argument('--train_epochs', type=int, default=100, help='train epochs')
    # batch_size大小
    parser.add_argument('--batch_size', type=int, default=32, help='batch size of train input data')
    # early stopping检测间隔
    parser.add_argument('--patience', type=int, default=3, help='early stopping patience')
    # 学习率
    parser.add_argument('--learning_rate', type=float, default=0.0001, help='optimizer learning rate')
    parser.add_argument('--des', type=str, default='test', help='exp description')
    # loss函数
    parser.add_argument('--loss', type=str, default='mse', help='loss function')
    # 学习率衰减参数
    parser.add_argument('--lradj', type=str, default='type1', help='adjust learning rate')
    # 是否使用自动混合精度训练
    parser.add_argument('--use_amp', action='store_true', help='use automatic mixed precision training', default=False)
    
    # 是否使用GPU训练
    parser.add_argument('--use_gpu', type=bool, default=True, help='use gpu')
    parser.add_argument('--gpu', type=int, default=0, help='gpu')
    # GPU分布式训练
    parser.add_argument('--use_multi_gpu', action='store_true', help='use multiple gpus', default=False)
    # 多GPU训练
    parser.add_argument('--devices', type=str, default='0,1,2,3', help='device ids of multile gpus')
    parser.add_argument('--test_flop', action='store_true', default=False, help='See utils/tools for usage')
    
    # 取参数表
    args = parser.parse_args()
    # 获取GPU
    args.use_gpu = True if torch.cuda.is_available() and args.use_gpu else False
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108

    我们在exp.train(setting)行打上断点跳到训练主函数exp_main.py

    数据处理模块

    • _get_data中找到数据处理函数data_provider.py点击进入,可以看到各标准数据集处理方法:
    data_dict = {
        'ETTh1': Dataset_ETT_hour,
        'ETTh2': Dataset_ETT_hour,
        'ETTm1': Dataset_ETT_minute,
        'ETTm2': Dataset_ETT_minute,
        'Custom': Dataset_Custom,
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 由于我们的数据集是ETTh1,那么数据处理的方式为Dataset_ETT_hour,我们进入data_loader.py文件,找到Dataset_ETT_hour
    • __init__主要用于传各类参数,这里不过多赘述,主要对__read_data__进行说明
         def __read_data__(self):
            # 数据标准化实例
            self.scaler = StandardScaler()
            # 读取数据
            df_raw = pd.read_csv(os.path.join(self.root_path,
                                              self.data_path))
            # 计算数据起始点
            border1s = [0, 12 * 30 * 24 - self.seq_len, 12 * 30 * 24 + 4 * 30 * 24 - self.seq_len]
            border2s = [12 * 30 * 24, 12 * 30 * 24 + 4 * 30 * 24, 12 * 30 * 24 + 8 * 30 * 24]
            border1 = border1s[self.set_type]
            border2 = border2s[self.set_type]
    
            # 如果预测对象为多变量预测或多元预测单变量
            if self.features == 'M' or self.features == 'MS':
                # 取除日期列的其他所有列
                cols_data = df_raw.columns[1:]
                df_data = df_raw[cols_data]
            # 若预测类型为S(单特征预测单特征)
            elif self.features == 'S':
                # 取特征列
                df_data = df_raw[[self.target]]
    
            # 将数据进行归一化
            if self.scale:
                train_data = df_data[border1s[0]:border2s[0]]
                self.scaler.fit(train_data.values)
                data = self.scaler.transform(df_data.values)
            else:
                data = df_data.values
            # 取日期列
            df_stamp = df_raw[['date']][border1:border2]
            # 利用pandas将数据转换为日期格式
            df_stamp['date'] = pd.to_datetime(df_stamp.date)
            # 构建时间特征
            if self.timeenc == 0:
                df_stamp['month'] = df_stamp.date.apply(lambda row: row.month, 1)
                df_stamp['day'] = df_stamp.date.apply(lambda row: row.day, 1)
                df_stamp['weekday'] = df_stamp.date.apply(lambda row: row.weekday(), 1)
                df_stamp['hour'] = df_stamp.date.apply(lambda row: row.hour, 1)
                data_stamp = df_stamp.drop(['date'], 1).values
            elif self.timeenc == 1:
                # 时间特征构造函数
                data_stamp = time_features(pd.to_datetime(df_stamp['date'].values), freq=self.freq)
                # 转置
                data_stamp = data_stamp.transpose(1, 0)
            
            # 取数据特征列
            self.data_x = data[border1:border2]
            self.data_y = data[border1:border2]
            self.data_stamp = data_stamp
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 需要注意的是time_features函数,用来提取日期特征,比如't':['month','day','weekday','hour','minute'],表示提取月,天,周,小时,分钟。可以打开timefeatures.py文件进行查阅,同样后期也可以加一些日期编码进去。
    • 同样的,对__getitem__进行说明
        def __getitem__(self, index):
            # 随机取得标签
            s_begin = index
    
            # 训练区间
            s_end = s_begin + self.seq_len
            # 有标签区间+无标签区间(预测时间步长)
            r_begin = s_end - self.label_len
            r_end = r_begin + self.label_len + self.pred_len
    
            # 取训练数据
            seq_x = self.data_x[s_begin:s_end]
            seq_y = self.data_y[r_begin:r_end]
            # 取训练数据对应时间特征
            seq_x_mark = self.data_stamp[s_begin:s_end]
            # 取有标签区间+无标签区间(预测时间步长)对应时间特征
            seq_y_mark = self.data_stamp[r_begin:r_end]
    
            return seq_x, seq_y, seq_x_mark, seq_y_mark
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19

    网络架构

    • 我们回到exp_main.py文件中的train函数。
     def train(self, setting):
            train_data, train_loader = self._get_data(flag='train')
            vali_data, vali_loader = self._get_data(flag='val')
            test_data, test_loader = self._get_data(flag='test')
    
            path = os.path.join(self.args.checkpoints, setting)
            if not os.path.exists(path):
                os.makedirs(path)
            # 记录时间
            time_now = time.time()
    
            # 训练steps
            train_steps = len(train_loader)
            # 早停策略
            early_stopping = EarlyStopping(patience=self.args.patience, verbose=True)
    
            # 优化器
            model_optim = self._select_optimizer()
            # 损失函数(MSE)
            criterion = self._select_criterion()
    
            # 分布式训练(windows一般不推荐)
            if self.args.use_amp:
                scaler = torch.cuda.amp.GradScaler()
    
            # 训练次数
            for epoch in range(self.args.train_epochs):
                iter_count = 0
                train_loss = []
    
                self.model.train()
                epoch_time = time.time()
                for i, (batch_x, batch_y, batch_x_mark, batch_y_mark) in enumerate(train_loader):
                    iter_count += 1
                    # 梯度归零
                    model_optim.zero_grad()
                    # 取训练数据
                    batch_x = batch_x.float().to(self.device)
                    batch_y = batch_y.float().to(self.device)
                    batch_x_mark = batch_x_mark.float().to(self.device)
                    batch_y_mark = batch_y_mark.float().to(self.device)
    
                    # decoder输入
                    dec_inp = torch.zeros_like(batch_y[:, -self.args.pred_len:, :]).float()
                    dec_inp = torch.cat([batch_y[:, :self.args.label_len, :], dec_inp], dim=1).float().to(self.device)
    
                    # encoder - decoder
                    if self.args.use_amp:
                        with torch.cuda.amp.autocast():
                            if 'Linear' in self.args.model:
                                outputs = self.model(batch_x)
                            else:
                                if self.args.output_attention:
                                    outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)[0]
                                else:
                                    outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)
    
                            f_dim = -1 if self.args.features == 'MS' else 0
                            outputs = outputs[:, -self.args.pred_len:, f_dim:]
                            batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device)
                            loss = criterion(outputs, batch_y)
                            train_loss.append(loss.item())
                    else:
                        # 如果模型是Linear系列
                        if 'Linear' in self.args.model:
                                # 得到输出
                                outputs = self.model(batch_x)
                        else:
                            if self.args.output_attention:
                                outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)[0]
                                
                            else:
                                outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark, batch_y)
                        # print(outputs.shape,batch_y.shape)
                        # 如果预测方式为MS,取最后1列否则取第1列
                        f_dim = -1 if self.args.features == 'MS' else 0
                        outputs = outputs[:, -self.args.pred_len:, f_dim:]
                        batch_y = batch_y[:, -self.args.pred_len:, f_dim:].to(self.device)
                        # 计算损失
                        loss = criterion(outputs, batch_y)
                        # 将损失放入train_loss列表中
                        train_loss.append(loss.item())
                    # 记录训练过程
                    if (i + 1) % 500 == 0:
                        print("\titers: {0}, epoch: {1} | loss: {2:.7f}".format(i + 1, epoch + 1, loss.item()))
                        speed = (time.time() - time_now) / iter_count
                        left_time = speed * ((self.args.train_epochs - epoch) * train_steps - i)
                        print('\tspeed: {:.4f}s/iter; left time: {:.4f}s'.format(speed, left_time))
                        iter_count = 0
                        time_now = time.time()
    
                    if self.args.use_amp:
                        scaler.scale(loss).backward()
                        scaler.step(model_optim)
                        scaler.update()
                    else:
                        # 反向传播
                        loss.backward()
                        # 更新梯度
                        model_optim.step()
    
                print("Epoch: {} cost time: {}".format(epoch + 1, time.time() - epoch_time))
                train_loss = np.average(train_loss)
                vali_loss = self.vali(vali_data, vali_loader, criterion)
                test_loss = self.vali(test_data, test_loader, criterion)
    
                print("Epoch: {0}, Steps: {1} | Train Loss: {2:.7f} Vali Loss: {3:.7f} Test Loss: {4:.7f}".format(
                    epoch + 1, train_steps, train_loss, vali_loss, test_loss))
                early_stopping(vali_loss, self.model, path)
                if early_stopping.early_stop:
                    print("Early stopping")
                    break
                # 更新学习率
                adjust_learning_rate(model_optim, epoch + 1, self.args)
            # 保存模型
            best_model_path = path + '/' + 'checkpoint.pth'
            self.model.load_state_dict(torch.load(best_model_path))
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 73
    • 74
    • 75
    • 76
    • 77
    • 78
    • 79
    • 80
    • 81
    • 82
    • 83
    • 84
    • 85
    • 86
    • 87
    • 88
    • 89
    • 90
    • 91
    • 92
    • 93
    • 94
    • 95
    • 96
    • 97
    • 98
    • 99
    • 100
    • 101
    • 102
    • 103
    • 104
    • 105
    • 106
    • 107
    • 108
    • 109
    • 110
    • 111
    • 112
    • 113
    • 114
    • 115
    • 116
    • 117
    • 注意模型训练outputs = self.model(batch_x, batch_x_mark, dec_inp, batch_y_mark)model中包含DLinear的核心架构(也是最重要的部分),打开项目文件夹下models文件夹,找到DLinear.py文件,打开后找到Model类。直接看forward
        def forward(self, x):
            # x: [Batch, Input length, Channel]
            # 季节与时间趋势性分解
            seasonal_init, trend_init = self.decompsition(x)
            # 将维度索引2与维度索引1交换
            seasonal_init, trend_init = seasonal_init.permute(0,2,1), trend_init.permute(0,2,1)
            if self.individual:
                seasonal_output = torch.zeros([seasonal_init.size(0),seasonal_init.size(1),self.pred_len],dtype=seasonal_init.dtype).to(seasonal_init.device)
                trend_output = torch.zeros([trend_init.size(0),trend_init.size(1),self.pred_len],dtype=trend_init.dtype).to(trend_init.device)
                for i in range(self.channels):
                    # 使用全连接层得到季节性
                    seasonal_output[:,i,:] = self.Linear_Seasonal[i](seasonal_init[:,i,:])
                    # 使用全连接层得到趋势性
                    trend_output[:,i,:] = self.Linear_Trend[i](trend_init[:,i,:])
                    # 两者共享所有权重
            else:
                seasonal_output = self.Linear_Seasonal(seasonal_init)
                trend_output = self.Linear_Trend(trend_init)
            # 将季节性与趋势性相加
            x = seasonal_output + trend_output
            # 交换维度位置
            return x.permute(0,2,1) # to [Batch, Output length, Channel]
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 季节趋势性分解,跳转到series_decomp
    class series_decomp(nn.Module):
        """
        Series decomposition block
        """
        def __init__(self, kernel_size):
            super(series_decomp, self).__init__()
            self.moving_avg = moving_avg(kernel_size, stride=1)
    
        def forward(self, x):
            # 滑动平均
            moving_mean = self.moving_avg(x)
            # 季节趋势性
            res = x - moving_mean
            return res, moving_mean
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 季节性和趋势性使用同一全连接神经网络,共享所有权重。使用nn.Linear函数构建了全连接神经网络

    结果展示

    • 训练DLinear模型是非常快的,因为丢弃了很多transformer中复杂的计算块,跑一遍ETTh1数据只需要大约1分钟,我用的笔记本上的CPU。
    Args in experiment:
    Namespace(is_training=1, model_id='test', model='DLinear', data='ETTh1', root_path='./data/', data_path='ETTh1.csv', features='M', target='OT', freq='h', checkpoints='./checkpoints/', seq_len=96, label_len=48, pred_len=96, individual=False, embed_type=0, enc_in=7, dec_in=7, c_out=7, d_model=512, n_heads=8, e_layers=2, d_layers=1, d_ff=2048, moving_avg=25, factor=1, distil=True, dropout=0.05, embed='timeF', activation='gelu', output_attention=False, do_predict=True, num_workers=0, itr=1, train_epochs=100, batch_size=32, patience=3, learning_rate=0.0001, des='test', loss='mse', lradj='type1', use_amp=False, use_gpu=False, gpu=0, use_multi_gpu=False, devices='0,1,2,3', test_flop=False)
    Use CPU
    >>>>>>>start training : DLinear_rate 0.0001>>>>>>>>>>>>>>>>>>>>>>>>>>
    train 8449
    val 2785
    test 2785
    Epoch: 1 cost time: 1.5147898197174072
    Epoch: 1, Steps: 264 | Train Loss: 0.6620889 Vali Loss: 0.8593202 Test Loss: 0.5310578
    Validation loss decreased (inf --> 0.859320).  Saving model ...
    Updating learning rate to 0.0001
    Epoch: 2 cost time: 1.49473237991333
    Epoch: 2, Steps: 264 | Train Loss: 0.4363616 Vali Loss: 0.7708484 Test Loss: 0.4540242
    Validation loss decreased (0.859320 --> 0.770848).  Saving model ...
    Updating learning rate to 5e-05
    Epoch: 3 cost time: 1.2200875282287598
    Epoch: 3, Steps: 264 | Train Loss: 0.4081523 Vali Loss: 0.7452631 Test Loss: 0.4380584
    Validation loss decreased (0.770848 --> 0.745263).  Saving model ...
    Updating learning rate to 2.5e-05
    Epoch: 4 cost time: 1.2776997089385986
    Epoch: 4, Steps: 264 | Train Loss: 0.3990288 Vali Loss: 0.7355505 Test Loss: 0.4318272
    Validation loss decreased (0.745263 --> 0.735550).  Saving model ...
    Updating learning rate to 1.25e-05
    Epoch: 5 cost time: 1.2430932521820068
    Epoch: 5, Steps: 264 | Train Loss: 0.3950030 Vali Loss: 0.7301292 Test Loss: 0.4291500
    Validation loss decreased (0.735550 --> 0.730129).  Saving model ...
    Updating learning rate to 6.25e-06
    Epoch: 6 cost time: 1.260094165802002
    Epoch: 6, Steps: 264 | Train Loss: 0.3931120 Vali Loss: 0.7285364 Test Loss: 0.4276760
    Validation loss decreased (0.730129 --> 0.728536).  Saving model ...
    Updating learning rate to 3.125e-06
    Epoch: 7 cost time: 1.2400920391082764
    Epoch: 7, Steps: 264 | Train Loss: 0.3921362 Vali Loss: 0.7272122 Test Loss: 0.4269841
    Validation loss decreased (0.728536 --> 0.727212).  Saving model ...
    Updating learning rate to 1.5625e-06
    Epoch: 8 cost time: 1.2691984176635742
    Epoch: 8, Steps: 264 | Train Loss: 0.3916254 Vali Loss: 0.7265375 Test Loss: 0.4266387
    Validation loss decreased (0.727212 --> 0.726538).  Saving model ...
    Updating learning rate to 7.8125e-07
    Epoch: 9 cost time: 1.31856369972229
    Epoch: 9, Steps: 264 | Train Loss: 0.3913689 Vali Loss: 0.7263398 Test Loss: 0.4264523
    Validation loss decreased (0.726538 --> 0.726340).  Saving model ...
    Updating learning rate to 3.90625e-07
    Epoch: 10 cost time: 1.3412230014801025
    Epoch: 10, Steps: 264 | Train Loss: 0.3912611 Vali Loss: 0.7261187 Test Loss: 0.4263628
    Validation loss decreased (0.726340 --> 0.726119).  Saving model ...
    Updating learning rate to 1.953125e-07
    Epoch: 11 cost time: 1.246096134185791
    Epoch: 11, Steps: 264 | Train Loss: 0.3911887 Vali Loss: 0.7262567 Test Loss: 0.4263154
    EarlyStopping counter: 1 out of 3
    Updating learning rate to 9.765625e-08
    Epoch: 12 cost time: 1.2540950775146484
    Epoch: 12, Steps: 264 | Train Loss: 0.3911324 Vali Loss: 0.7254719 Test Loss: 0.4262920
    Validation loss decreased (0.726119 --> 0.725472).  Saving model ...
    Updating learning rate to 4.8828125e-08
    Epoch: 13 cost time: 1.284095287322998
    Epoch: 13, Steps: 264 | Train Loss: 0.3911295 Vali Loss: 0.7261668 Test Loss: 0.4262800
    EarlyStopping counter: 1 out of 3
    Updating learning rate to 2.44140625e-08
    Epoch: 14 cost time: 1.3260986804962158
    Epoch: 14, Steps: 264 | Train Loss: 0.3911082 Vali Loss: 0.7258070 Test Loss: 0.4262740
    EarlyStopping counter: 2 out of 3
    Updating learning rate to 1.220703125e-08
    Epoch: 15 cost time: 1.2486040592193604
    Epoch: 15, Steps: 264 | Train Loss: 0.3911197 Vali Loss: 0.7261318 Test Loss: 0.4262710
    EarlyStopping counter: 3 out of 3
    Early stopping
    >>>>>>>testing : DLinear_rate 0.0001<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    test 2785
    mse:0.42629215121269226, mae:0.4337235391139984
    >>>>>>>predicting : DLinear_rate 0.0001<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
    pred 1
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    • 28
    • 29
    • 30
    • 31
    • 32
    • 33
    • 34
    • 35
    • 36
    • 37
    • 38
    • 39
    • 40
    • 41
    • 42
    • 43
    • 44
    • 45
    • 46
    • 47
    • 48
    • 49
    • 50
    • 51
    • 52
    • 53
    • 54
    • 55
    • 56
    • 57
    • 58
    • 59
    • 60
    • 61
    • 62
    • 63
    • 64
    • 65
    • 66
    • 67
    • 68
    • 69
    • 70
    • 71
    • 72
    • 模型运行完以后会在test_results文件夹下生成,模型在测试集上表现情况:
      请添加图片描述
    • 如果想要生成季节性、趋势性图,可以打开项目文件夹下的weight_plot.py文件,将save_root = 'weights_plot/%s'%root.split('/')[1]改成save_root = './weights_plot/',然后运行。那么在weights_plot文件夹下就能看见季节性与趋势性热力图。
    季节性趋势

    趋势性

    总体趋势

    后面如果有时间我会继续写如何使用DLinear定义自己的项目。

  • 相关阅读:
    [二分][状压dp]Boss Rush 2022杭电多校第3场 1002
    【算法】KMP算法——解决字符串匹配问题
    HI3559AV100 GPIO配置和操作(二)
    muduo源码剖析之TcpClient客户端类
    ElasticSearch 环境安装
    React Native项目中启用Hermes 引擎
    r9 5900hx和i9 12900h哪个好
    人类真的与恐龙无缘见面吗?看看雕刻和绘画怎样说
    【点云处理】点云法向量估计及其加速(4)
    在YesDev研发协同工具,项目协作 All In One
  • 原文地址:https://blog.csdn.net/qq_20144897/article/details/128050482