• 2022.11.23Max Sum Plus Plus HDU - 1024


    Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

    Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).

    Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).

    But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^

    Input

    Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
    Process to the end of file.

    Output

    Output the maximal summation described above in one line.

    Sample

    InputcopyOutputcopy
     
    1 3 1 2 3 2 6 -1 4 -2 3 -2 3 
     
    6 8

    Hint


    Huge input, scanf and dynamic programming is recommended.

    原题链接:传送门 

    题意:长度为n的序列,m个子段和的最大值

    思路:我们构造dp[i][j]状态表示为前j个数分成i组的最大值

    状态转移方程dp[j][j]=max\{dp[i][j-1],dp[i][j-1] + a[j],dp[i-1][k]+a[j]\}(0<k<j)

    我们看到数据范围会发现二维dp不太可行,所以我们需要对二维dp进行压缩,可以另开一个数组来代表dp[i-1][k]这样我们就能放心地去压缩一维。

    ps:在循环中f[j-1]代表前j-1个数分成i-1组的最大值

    1. #include
    2. using namespace std;
    3. typedef long long LL;
    4. const int inf = 1 << 30;
    5. int main(){
    6. int n, m;
    7. while(~scanf("%d%d", &m, &n)){
    8. vector a(n + 1), f(n + 1, 0), dp(n + 1, 0);
    9. for(int i = 1; i <= n; i++) cin >> a[i];
    10. dp[0] = -inf;LL ans;
    11. for(int i = 1; i <= m; i++){
    12. ans = -inf;
    13. for(int j = 1; j <= n; j ++){
    14. dp[j] = max(dp[j - 1] + a[j], f[j - 1] + a[j]);
    15. f[j - 1] = ans;
    16. ans = max(ans, dp[j]);
    17. }
    18. }
    19. printf("%lld\n", ans);
    20. }
    21. return 0;
    22. }

     

  • 相关阅读:
    Linux60个小时速成
    模型代码联动难? BizWorks来助力
    行业竞争分析及发展动向
    什么是方法,什么是方法论:了解自我精进提升的底层逻辑
    rapidocr-onnxruntime库及在open-webui上传PDF 图像处理 (使用 OCR)应用
    MTK Android12 SystemUI 手势导航 隐藏导航栏底部布局
    连锁快餐绩效考核中的神秘顾客调查
    图像分割方法
    C++文件服务器项目—Nginx—3
    备忘录软件综合评测:优点、缺点、评价及替代品
  • 原文地址:https://blog.csdn.net/weixin_62802134/article/details/128010213