Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample
Inputcopy | Outputcopy |
---|---|
1 3 1 2 3 2 6 -1 4 -2 3 -2 3 | 6 8 |
Hint
Huge input, scanf and dynamic programming is recommended.
原题链接:传送门
题意:长度为n的序列,m个子段和的最大值
思路:我们构造dp[i][j]状态表示为前j个数分成i组的最大值
我们看到数据范围会发现二维dp不太可行,所以我们需要对二维dp进行压缩,可以另开一个数组来代表dp[i-1][k]这样我们就能放心地去压缩一维。
ps:在循环中f[j-1]代表前j-1个数分成i-1组的最大值
- #include
- using namespace std;
- typedef long long LL;
- const int inf = 1 << 30;
- int main(){
- int n, m;
- while(~scanf("%d%d", &m, &n)){
- vector
a(n + 1), f(n + 1, 0), dp(n + 1, 0) ; - for(int i = 1; i <= n; i++) cin >> a[i];
- dp[0] = -inf;LL ans;
- for(int i = 1; i <= m; i++){
- ans = -inf;
- for(int j = 1; j <= n; j ++){
- dp[j] = max(dp[j - 1] + a[j], f[j - 1] + a[j]);
- f[j - 1] = ans;
- ans = max(ans, dp[j]);
- }
- }
- printf("%lld\n", ans);
- }
- return 0;
- }