• 大数据培训课程GroupingComparator分组案例实操


    GroupingComparator分组案例实操

    1.需求

    有如下订单数据

    表4-2 订单数据

    现在需要求出每一个订单中最贵的商品。

    (1)输入数据

    (2)期望输出数据

    1       222.8

    2       722.4

    3       232.8

    2.需求分析

    (1)利用“订单id和成交金额”作为key,可以将Map阶段读取到的所有订单数据按照id升序排序,如果id相同再按照金额降序排序,发送到Reduce

    (2)在Reduce端利用groupingComparator将订单id相同的kv聚合成组,然后取第一个即是该订单中最贵商品,如图4-18所示。

    图4-18 过程分析

    3.代码实现

    (1)定义订单信息OrderBean类

    package com.atguigu.mapreduce.order; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import org.apache.hadoop.io.WritableComparable;   public class OrderBean implements WritableComparable {     private int order_id; // 订单id号   private double price; // 价格     public OrderBean() {       super();   }     public OrderBean(int order_id, double price) {       super();       this.order_id = order_id;       this.price = price;   }     @Override   public void write(DataOutput out) throws IOException {       out.writeInt(order_id);       out.writeDouble(price);   }     @Override   public void readFields(DataInput in) throws IOException {       order_id = in.readInt();       price = in.readDouble();   }     @Override   public String toString() {       return order_id + “\t” + price;   }     public int getOrder_id() {       return order_id;   }     public void setOrder_id(int order_id) {       this.order_id = order_id;   }     public double getPrice() {       return price;   }     public void setPrice(double price) {       this.price = price;   }     // 二次排序   @Override   public int compareTo(OrderBean o) {         int result;         if (order_id > o.getOrder_id()) {          result = 1;       } else if (order_id < o.getOrder_id()) {          result = -1;       } else {          // 价格倒序排序          result = price > o.getPrice() ? -1 : 1;       }         return result;   } }

    (2)编写OrderSortMapper类

    package com.atguigu.mapreduce.order; import java.io.IOException; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper;   public class OrderMapper extends Mapper {     OrderBean k = new OrderBean();     @Override   protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {             // 1 获取一行       String line = value.toString();             // 2 截取       String[] fields = line.split(“\t”);             // 3 封装对象       k.setOrder_id(Integer.parseInt(fields[0]));       k.setPrice(Double.parseDouble(fields[2]));             // 4 写出       context.write(k, NullWritable.get());   } }

    (3)编写OrderSortGroupingComparator类

    package com.atguigu.mapreduce.order; import org.apache.hadoop.io.WritableComparable; import org.apache.hadoop.io.WritableComparator;   public class OrderGroupingComparator extends WritableComparator {     protected OrderGroupingComparator() {       super(OrderBean.class, true);   }     @Override   public int compare(WritableComparable a, WritableComparable b) {         OrderBean aBean = (OrderBean) a;       OrderBean bBean = (OrderBean) b;         int result;       if (aBean.getOrder_id() > bBean.getOrder_id()) {          result = 1;   } else if (aBean.getOrder_id() < bBean.getOrder_id()) {          result = -1;       } else {          result = 0;       }         return result;   } }

    (4)编写OrderSortReducer类

    package com.atguigu.mapreduce.order; import java.io.IOException; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.mapreduce.Reducer;   public class OrderReducer extends Reducer {     @Override   protected void reduce(OrderBean key, Iterable values, Context context)     throws IOException, InterruptedException {             context.write(key, NullWritable.get());   } }

    (5)编写OrderSortDriver类

    package com.atguigu.mapreduce.order; import java.io.IOException; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;   public class OrderDriver {     public static void main(String[] args) throws Exception, IOException {   // 输入输出路径需要根据自己电脑上实际的输入输出路径设置       args  = new String[]{“e:/input/inputorder” , “e:/output1”};         // 1 获取配置信息       Configuration conf = new Configuration();       Job job = Job.getInstance(conf);         // 2 设置jar包加载路径       job.setJarByClass(OrderDriver.class);         // 3 加载map/reduce类       job.setMapperClass(OrderMapper.class);       job.setReducerClass(OrderReducer.class);         // 4 设置map输出数据key和value类型       job.setMapOutputKeyClass(OrderBean.class);       job.setMapOutputValueClass(NullWritable.class);         // 5 设置最终输出数据的key和value类型       job.setOutputKeyClass(OrderBean.class);       job.setOutputValueClass(NullWritable.class);         // 6 设置输入数据和输出数据路径       FileInputFormat.setInputPaths(job, new Path(args[0]));       FileOutputFormat.setOutputPath(job, new Path(args[1]));        // 8 设置reduce端的分组   job.setGroupingComparatorClass(OrderGroupingComparator.class);         // 7 提交       boolean result = job.waitForCompletion(true);       System.exit(result ? 0 : 1);   } }
  • 相关阅读:
    探索GreatADM:如何快速定义监控
    ElasticSearch01_简介、详解倒排索引、安装es以及kibana、检索es基本信息、增删改查文档
    【安鸾靶场】cmseasy&内网渗透 (500分)
    如何获取文本中出现的所有单词
    成都理工大学_Python程序设计_第5章
    c++入门必学算法 快速幂
    javaweb(三)
    【MySQL】SQL语句
    尿频中医如何辩证治疗
    国家职业分类大典公示 心理咨询行业迎来重大变革
  • 原文地址:https://blog.csdn.net/zjjcchina/article/details/127996626