目录
- >- **🍨 本文为[🔗365天深度学习训练营](https://mp.weixin.qq.com/s/xLjALoOD8HPZcH563En8bQ) 中的学习记录博客**
- >- **🍦 参考文章:365天深度学习训练营-第7周:咖啡豆识别(训练营内部成员可读)**
- >- **🍖 原作者:[K同学啊|接辅导、项目定制](https://mtyjkh.blog.csdn.net/)**
- ● 难度:夯实基础⭐⭐
- ● 语言:Python3、TensorFlow2
- ● 时间:9月5-9月9日
-
- 🍺 要求:
- 1. 自己搭建VGG-16网络框架
- 2. 调用官方的VGG-16网络框架
-
- 🍻 拔高(可选):
- 1. 验证集准确率达到100%
- 2. 使用PPT画出VGG-16算法框架图(发论文需要这项技能)
-
- 🔎 探索(难度有点大)
- 1. 在不影响准确率的前提下轻量化模型
- ○ 目前VGG16的Total params是134,276,932
语言环境:Python3.7
编译器:jupyter notebook
深度学习环境:TensorFlow2
- import tensorflow as tf
-
- gpus = tf.config.list_physical_devices("GPU")
-
- if gpus:
- tf.config.experimental.set_memory_growth(gpus[0], True) #设置GPU显存用量按需使用
- tf.config.set_visible_devices([gpus[0]],"GPU")
-
- from tensorflow.keras import layers
- import numpy as np
- import matplotlib.pyplot as plt
- import pathlib
-
- data_dir = "./49-data/"
- data_dir = pathlib.Path(data_dir)
-
- image_count = len(list(data_dir.glob('*/*.png')))
-
- print("图片总数为:",image_count)
-
- batch_size = 32
- img_height = 224
- img_width = 224
-
- """
- 关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
- """
- train_ds = tf.keras.preprocessing.image_dataset_from_directory(
- data_dir,
- validation_split=0.2,
- subset="training",
- seed=123,
- image_size=(img_height, img_width),
- batch_size=batch_size)
- """
- 关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
- """
- val_ds = tf.keras.preprocessing.image_dataset_from_directory(
- data_dir,
- validation_split=0.2,
- subset="validation",
- seed=123,
- image_size=(img_height, img_width),
- batch_size=batch_size)
-
- class_names = train_ds.class_names
- print(class_names)
-
- plt.figure(figsize=(10, 4)) # 图形的宽为10高为5
-
- for images, labels in train_ds.take(1):
- for i in range(10):
- ax = plt.subplot(2, 5, i + 1)
-
- plt.imshow(images[i].numpy().astype("uint8"))
- plt.title(class_names[labels[i]])
-
- plt.axis("off")
-
- for image_batch, labels_batch in train_ds:
- print(image_batch.shape)
- print(labels_batch.shape)
- break
-
- AUTOTUNE = tf.data.AUTOTUNE
-
- train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
- val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
-
- normalization_layer = layers.experimental.preprocessing.Rescaling(1./255)
-
- train_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
- val_ds = val_ds.map(lambda x, y: (normalization_layer(x), y))
-
- image_batch, labels_batch = next(iter(val_ds))
- first_image = image_batch[0]
-
- # 查看归一化后的数据
- print(np.min(first_image), np.max(first_image))
-
- # model = tf.keras.applications.VGG16(weights='imagenet')
- # model.summary()
-
- from tensorflow.keras import Input
- from tensorflow.keras.models import Model
- from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Flatten
-
-
- def VGG16(nb_classes, input_shape):
- input_tensor = Input(shape=input_shape)
- # 1st block
- x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv1')(input_tensor)
- x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv2')(x)
- x = MaxPooling2D((2,2), strides=(2,2), name = 'block1_pool')(x)
- # 2nd block
- x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv1')(x)
- x = Conv2D(128, (3,3), activation='relu', padding='same',name='block2_conv2')(x)
- x = MaxPooling2D((2,2), strides=(2,2), name = 'block2_pool')(x)
- # 3rd block
- x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv1')(x)
- x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv2')(x)
- x = Conv2D(256, (3,3), activation='relu', padding='same',name='block3_conv3')(x)
- x = MaxPooling2D((2,2), strides=(2,2), name = 'block3_pool')(x)
- # 4th block
- x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv1')(x)
- x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv2')(x)
- x = Conv2D(512, (3,3), activation='relu', padding='same',name='block4_conv3')(x)
- x = MaxPooling2D((2,2), strides=(2,2), name = 'block4_pool')(x)
- # 5th block
- x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv1')(x)
- x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv2')(x)
- x = Conv2D(512, (3,3), activation='relu', padding='same',name='block5_conv3')(x)
- x = MaxPooling2D((2,2), strides=(2,2), name = 'block5_pool')(x)
- # full connection
- x = Flatten()(x)
- x = Dense(4096, activation='relu', name='fc1')(x)
- x = Dense(4096, activation='relu', name='fc2')(x)
- output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)
-
- model = Model(input_tensor, output_tensor)
- return model
-
- model=VGG16(len(class_names), (img_width, img_height, 3))
- model.summary()
-
- # 设置初始学习率
- initial_learning_rate = 1e-4
-
- lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
- initial_learning_rate,
- decay_steps=30, # 敲黑板!!!这里是指 steps,不是指epochs
- decay_rate=0.92, # lr经过一次衰减就会变成 decay_rate*lr
- staircase=True)
-
- # 设置优化器
- opt = tf.keras.optimizers.Adam(learning_rate=initial_learning_rate)
-
- model.compile(optimizer=opt,
- loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
- metrics=['accuracy'])
-
- epochs = 20
-
- history = model.fit(
- train_ds,
- validation_data=val_ds,
- epochs=epochs
- )
-
- acc = history.history['accuracy']
- val_acc = history.history['val_accuracy']
-
- loss = history.history['loss']
- val_loss = history.history['val_loss']
-
- epochs_range = range(epochs)
-
- plt.figure(figsize=(12, 4))
- plt.subplot(1, 2, 1)
- plt.plot(epochs_range, acc, label='Training Accuracy')
- plt.plot(epochs_range, val_acc, label='Validation Accuracy')
- plt.legend(loc='lower right')
- plt.title('Training and Validation Accuracy')
-
- plt.subplot(1, 2, 2)
- plt.plot(epochs_range, loss, label='Training Loss')
- plt.plot(epochs_range, val_loss, label='Validation Loss')
- plt.legend(loc='upper right')
- plt.title('Training and Validation Loss')
- plt.show()
- def LeNet5(nb_classes, input_shape):
- input_tensor = Input(shape=input_shape)
- # 1st block
- x = Conv2D(6, (5,5), activation='sigmoid', padding='same',name='block1_conv1')(input_tensor)
- #x = Conv2D(64, (3,3), activation='relu', padding='same',name='block1_conv2')(x)
- x = MaxPooling2D((2,2), strides=(2,2), name = 'block1_pool')(x)
-
- x = Conv2D(16, (5,5), activation='sigmoid', padding='same',name='block2_conv1')(x)
- x =MaxPooling2D((2,2),strides=(2,2),name = 'block2_pool')(x)
- # full connection
- x = Flatten()(x)
- x = Dense(120, activation='sigmoid', name='fc1')(x)
- x = Dense(84, activation='sigmoid', name='fc2')(x)
- output_tensor = Dense(nb_classes, activation='softmax', name='predictions')(x)
-
- model = Model(input_tensor, output_tensor)
- return model
-
- model=LeNet5(len(class_names), (img_width, img_height, 3))
- model.summary()
效果极差,下次一定不用
1、调低学习率(或按迭代次数衰减)
2、调整参数的初始化方法
3、调整输入数据的标准化方法
4、修改Loss函数
5、增加正则化
6、使用BN/GN层(中间层数据的标准化)
7、使用dropout
优化1
- model = keras.models.Sequential()
-
- # 优化 增加L2正则化
- model.add(keras.layers.Conv2D(64, (3, 3), padding='same', kernel_regularizer=keras.regularizers.l2(weight_decay)))
- model.add(keras.layers.Activation('relu'))
- # 优化 添加BN层和Dropout
- model.add(keras.layers.BatchNormalization())
- model.add(keras.layers.Dropout(0.3))
-
- model.add(keras.layers.Conv2D(64, (3, 3), padding='same', activation='relu'))
- model.add(keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2))
-
- model.add(keras.layers.Conv2D(128, (3, 3), padding='same', activation='relu'))
- model.add(keras.layers.Conv2D(128, (3, 3), padding='same', activation='relu'))
- model.add(keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2))
-
- model.add(keras.layers.Conv2D(256, (3, 3), padding='same', activation='relu'))
- model.add(keras.layers.Conv2D(256, (3, 3), padding='same', activation='relu'))
- model.add(keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2))
-
- model.add(keras.layers.Conv2D(512, (3, 3), padding='same', activation='relu'))
- model.add(keras.layers.Conv2D(512, (3, 3), padding='same', activation='relu'))
- model.add(keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2))
-
- model.add(keras.layers.Conv2D(512, (3, 3), padding='same', activation='relu'))
- model.add(keras.layers.Conv2D(512, (3, 3), padding='same', activation='relu'))
- model.add(keras.layers.MaxPooling2D(pool_size=(2, 2), strides=2))
-
- model.add(keras.layers.Flatten())
- model.add(keras.layers.Dense(256, activation='relu')) # VGG16为4096
- model.add(keras.layers.Dense(128, activation='relu')) # VGG16为4096
- model.add(keras.layers.Dense(num_classes, activation='softmax')) # VGG16为1000
优化2
- model = models.Sequential([
- layers.experimental.preprocessing.Rescaling( 1. ,input_shape=(img_height, img_width, 3)),
- layers.Conv2D(filters=64, kernel_size=(3, 3), padding='same'), # 卷积层1
- #layers.BatchNormalization(), # BN层1
- layers.Activation('relu'), # 激活层1
- layers.Conv2D(filters=64, kernel_size=(3, 3), padding='same', ),
- #layers.BatchNormalization(), # BN层1
- layers.Activation('relu') , # 激活层1
- layers.MaxPool2D(pool_size=(2, 2), strides=2, padding='same'),
- #layers.Dropout(0.2), # dropout层
- #
- layers.Conv2D(filters=128, kernel_size=(3, 3), padding='same'),
- #layers.BatchNormalization(), # BN层1
- layers.Activation('relu'), # 激活层1
- layers.Conv2D(filters=128, kernel_size=(3, 3), padding='same'),
- #layers.BatchNormalization(), # BN层1
- layers.Activation('relu'), # 激活层1
- layers.MaxPool2D(pool_size=(2, 2), strides=2, padding='same'),
- #layers.Dropout(0.2), # dropout层
- #
- layers.Conv2D(filters=256, kernel_size=(3, 3), padding='same'),
- #layers.BatchNormalization() , # BN层1
- layers.Activation('relu'), # 激活层1
- layers.Conv2D(filters=256, kernel_size=(3, 3), padding='same'),
- #layers.BatchNormalization() , # BN层1
- layers.Activation('relu') , # 激活层1
- layers.Conv2D(filters=256, kernel_size=(3, 3), padding='same'),
- # layers.BatchNormalization(),
- layers.Activation('relu'),
- layers.MaxPool2D(pool_size=(2, 2), strides=2, padding='same'),
- #layers.Dropout(0.2),
- #
- layers.Conv2D(filters=512, kernel_size=(3, 3), padding='same'),
- # layers.BatchNormalization() , # BN层1
- layers.Activation('relu') , # 激活层1
- layers.Conv2D(filters=512, kernel_size=(3, 3), padding='same'),
- #layers.BatchNormalization() , # BN层1
- layers.Activation('relu'), # 激活层1
- layers.Conv2D(filters=512, kernel_size=(3, 3), padding='same'),
- #layers.BatchNormalization(),
- layers.Activation('relu'),
- layers.MaxPool2D(pool_size=(2, 2), strides=2, padding='same'),
- #layers.Dropout(0.2),
- #
- layers.Conv2D(filters=512, kernel_size=(3, 3), padding='same'),
- # layers.BatchNormalization() , # BN层1
- layers.Activation('relu'), # 激活层1
- layers.Conv2D(filters=512, kernel_size=(3, 3), padding='same'),
- #layers.BatchNormalization(), # BN层1
- layers.Activation('relu'), # 激活层1
- layers.Conv2D(filters=512, kernel_size=(3, 3), padding='same'),
- # layers.BatchNormalization(),
- layers.Activation('relu'),
- layers.MaxPool2D(pool_size=(2, 2), strides=2, padding='same'),
- #layers.Dropout(0.2),
-
-
- layers.Flatten(), # Flatten层,连接卷积层与全连接层
- layers.Dense(4096, activation='relu'), # 全连接层,特征进一步提取
- layers.Dense(4096, activation='relu'), # 全连接层,特征进一步提取
- layers.Dense(len(class_names),activation='softmax') # 输出层,输出预期结果
- ])
- model.summary()