已知函数
f
(
x
)
=
x
(
1
−
ln
x
)
f(x)=x(1-\ln x)
f(x)=x(1−lnx)
(1)讨论
f
(
x
)
f(x)
f(x)的单调性
(2)设
a
,
b
a,b
a,b为两个不相等的正数,且
b
ln
a
−
a
ln
b
=
a
−
b
b\ln a-a\ln b=a-b
blna−alnb=a−b,
\qquad
求证:
2
<
1
a
+
1
b
<
e
2<\dfrac 1a+\dfrac 1b
解:
\quad
(1)
f
(
x
)
f(x)
f(x)定义域为
(
0
,
+
∞
)
(0,+\infty)
(0,+∞),
f
′
(
x
)
=
−
ln
x
f'(x)=-\ln x
f′(x)=−lnx
\qquad
当
x
∈
(
0
,
1
)
x\in(0,1)
x∈(0,1)时,
f
′
(
x
)
<
0
f'(x)<0
f′(x)<0
\qquad
当
x
=
1
x=1
x=1时,
f
′
(
x
)
=
0
f'(x)=0
f′(x)=0
\qquad
当
x
∈
(
1
,
+
∞
)
x\in(1,+\infty)
x∈(1,+∞)时,
f
′
(
x
)
>
0
f'(x)>0
f′(x)>0
\qquad 所以单调递增区间为 ( 0 , 1 ] (0,1] (0,1],单调递减区间为 [ 1 , + ∞ ) [1,+\infty) [1,+∞)
\quad (2) b ln a − a ln b = a − b b\ln a-a\ln b=a-b blna−alnb=a−b整理得 ln a + 1 a = ln b + 1 b \dfrac{\ln a+1}{a}=\dfrac{\ln b+1}{b} alna+1=blnb+1,即 f ( 1 a ) = f ( 1 b ) f(\dfrac 1a)=f(\dfrac 1b) f(a1)=f(b1)
\qquad
设
x
1
=
1
a
x_1=\dfrac 1a
x1=a1,
x
2
=
1
b
x_2=\dfrac 1b
x2=b1,不妨设
x
1
<
x
2
x_1
\qquad 由(1)得 f ( x ) f(x) f(x)在 ( 0 , 1 ] (0,1] (0,1]单调递增,在 [ 1 , + ∞ ) [1,+\infty) [1,+∞)单调递减
\qquad 所以 x 1 ∈ ( 0 , 1 ) , x 2 ∈ ( 1 , + ∞ ) x_1\in (0,1),x_2\in(1,+\infty) x1∈(0,1),x2∈(1,+∞)
\qquad ①证明 1 a + 1 b > 2 \dfrac 1a+\dfrac 1b>2 a1+b1>2
\qquad 令 F ( x ) = f ( x ) − f ( 2 − x ) F(x)=f(x)-f(2-x) F(x)=f(x)−f(2−x)
\qquad 则 F ′ ( x ) = − ln x − ln ( 2 − x ) = − ln x ( 2 − x ) F'(x)=-\ln x-\ln(2-x)=-\ln x(2-x) F′(x)=−lnx−ln(2−x)=−lnx(2−x)
\qquad 当 x ∈ ( 0 , 1 ) x\in(0,1) x∈(0,1)时, F ′ ( x ) < 0 F'(x)<0 F′(x)<0,即 F ( x ) F(x) F(x)单调递增
F
(
x
)
<
F
(
1
)
=
0
\qquad F(x)
∵ 1 < 2 − x 1 < 2 \qquad \because 1<2-x_1<2 ∵1<2−x1<2, f ( x ) f(x) f(x)在 [ 1 , + ∞ ) [1,+\infty) [1,+∞)上单调递减
∴
2
−
x
1
<
x
2
\qquad \therefore 2-x_1
\qquad
②证明
1
a
+
1
b
<
e
\dfrac 1a+\dfrac 1b
\qquad 令 F ( x ) = f ( x ) − f ( e − x ) = 2 x − e + ( e − x ) ln ( e − x ) − x ln x F(x)=f(x)-f(e-x)=2x-e+(e-x)\ln(e-x)-x\ln x F(x)=f(x)−f(e−x)=2x−e+(e−x)ln(e−x)−xlnx
g ( x ) = 2 x − e + ( e − x ) ln ( e − x ) \qquad \quad g(x)=2x-e+(e-x)\ln(e-x) g(x)=2x−e+(e−x)ln(e−x)
\qquad 当 x ∈ ( 0 , 1 ) x\in(0,1) x∈(0,1)时, g ′ ( x ) = 1 − ln ( e − x ) > 0 g'(x)=1-\ln(e-x)>0 g′(x)=1−ln(e−x)>0
\qquad 所以 g ( x ) g(x) g(x)单调递增,得 g ( x ) > g ( 0 ) = 0 g(x)>g(0)=0 g(x)>g(0)=0
∵ \qquad \because ∵当 x ∈ ( 0 , 1 ) x\in(0,1) x∈(0,1)时, − x ln x > 0 -x\ln x>0 −xlnx>0
∴ F ( x ) = g ( x ) − x ln x > 0 \qquad \therefore F(x)=g(x)-x\ln x>0 ∴F(x)=g(x)−xlnx>0
\qquad
即
f
(
x
)
>
f
(
e
−
x
)
f(x)>f(e-x)
f(x)>f(e−x),
f
(
e
−
x
1
)
<
f
(
x
1
)
=
f
(
x
2
)
f(e-x_1)
∵
e
−
1
<
e
−
x
1
<
e
\qquad \because e-1
∴
e
−
x
1
>
x
2
\qquad \therefore e-x_1>x_2
∴e−x1>x2,得
x
1
+
x
2
<
e
x_1+x_2
\qquad
综上所述,
2
<
1
a
+
1
b
<
e
2<\dfrac 1a+\dfrac 1b
以上是对这段时间学的内容的练习。解题过程并不严谨,但解题思路值得参考。若有错误,欢迎大家提出。