目录
MindSpore着重提升易用性并降低AI开发者的开发门槛,MindSpore原生适应每个场景包括端、边缘和云,并能够在按需协同的基础上,通过实现AI算法即代码,使开发态变得更加友好,显著减少模型开发时间,降低模型开发门槛。通过MindSpore自身的技术创新及MindSpore与华为昇腾AI处理器的协同优化,实现了运行态的高效,大大提高了计算性能;MindSpore也支持GPU、CPU等其它处理器。

官方版本的预训练模型中心库---MindSpore Hub
mindspore_hub 是一个Python库
下载网址:点击跳转
即插即用的模型加载
简单易用的迁移学习
- import mindspore
- import mindspore_hub as mshub
- from mindspore import set_context, GRAPH_MODE
-
- set_context(mode=GRAPH_MODE,
- device_target="Ascend",
- device_id=0)
-
- model = "mindspore/1.6/googlenet_cifar10"
-
- # Initialize the number of classes based on the pre-trained model.
- network = mshub.load(model, num_classes=10)
- network.set_train(False)
-
- # ...
· 推理验证:mindspore_hub.load用于加载预训练模型,可以实现一行代码完成模型的加载。
· 迁移学习:通过mindspore_hub.load完成模型加载后,可以增加一个额外的参数项只加载神经网络的特征提取部分,这样就能很容易地在之后增加一些新的层进行迁移学习。
· 发布模型:可以将自己训练好的模型按照指定的步骤发布到MindSpore Hub中,以供其他用户进行下载和使用。
硬件平台支持Ascend、GPU和CPU。
确认安装Python 3.7.5版本。
MindSpore Hub与MindSpore的版本需保持一致。
MindSpore Hub支持使用x86 64位或ARM 64位架构的Linux发行版系统。
在联网状态下,安装whl包时会自动下载
setup.py中的依赖项,其余情况需自行安装。
在命令行中输入下面代码进行下载MindSpore Hub whl包
pip install https://ms-release.obs.cn-north-4.myhuaweicloud.com/{version}/Hub/any/mindspore_hub-{version}-py3-none-any.whl --trusted-host ms-release.obs.cn-north-4.myhuaweicloud.com -i https://pypi.tuna.tsinghua.edu.cn/simple


- 从Gitee下载源码。
-
- git clone https://gitee.com/mindspore/hub.git -b r1.9
-
- 编译安装MindSpore Hub。
-
- cd hub ##切换到hub文件下
- python setup.py install ## 下载
- 在能联网的环境中执行以下命令,验证安装结果。
-
- import mindspore_hub as mshub
-
- model = mshub.load("mindspore/1.6/lenet_mnist", num_class=10)
-
- 如果出现下列提示,说明安装成功:
-
- Downloading data from url https://gitee.com/mindspore/hub/raw/r1.9/mshub_res/assets/mindspore/1.6/lenet_mnist.md
-
- Download finished!
- File size = 0.00 Mb
- Checking /home/ma-user/.mscache/mindspore/1.6/lenet_mnist.md...Passed!
于个人开发者来说,从零开始训练一个较好模型,需要大量的标注完备的数据、足够的计算资源和大量训练调试时间。使得模型训练非常消耗资源,提升了AI开发的门槛,针对以上问题,MindSpore Hub提供了很多训练完成的模型权重文件,可以使得开发者在拥有少量数据的情况下,只需要花费少量训练时间,即可快速训练出一个较好的模型。

- ##使用url完成模型的加载
-
- import mindspore_hub as mshub
- import mindspore
- from mindspore import Tensor, nn, Model, set_context, GRAPH_MODE
- from mindspore import dtype as mstype
- import mindspore.dataset.vision as vision
-
- set_context(mode=GRAPH_MODE,
- device_target="Ascend",
- device_id=0)
-
- model = "mindspore/1.6/googlenet_cifar10"
-
- # Initialize the number of classes based on the pre-trained model.
- network = mshub.load(model, num_classes=10)
- network.set_train(False)
最后使用MindSpore进行推理

- #使用url进行MindSpore Hub模型的加载,注意:include_top参数需要模型开发者提供。
-
- import os
- import mindspore_hub as mshub
- import mindspore
- from mindspore import Tensor, nn, set_context, GRAPH_MODE
- from mindspore.nn import Momentum
- from mindspore import save_checkpoint, load_checkpoint,load_param_into_net
- from mindspore import ops
- import mindspore.dataset as ds
- import mindspore.dataset.transforms as transforms
- import mindspore.dataset.vision as vision
- from mindspore import dtype as mstype
- from mindspore import Model
- set_context(mode=GRAPH_MODE, device_target="Ascend", device_id=0)
-
- model = "mindspore/1.6/mobilenetv2_imagenet2012"
- network = mshub.load(model, num_classes=500, include_top=False, activation="Sigmoid")
- network.set_train(False)
-
- #在现有模型结构基础上,增加一个与新任务相关的分类层。
-
- class ReduceMeanFlatten(nn.Cell):
- def __init__(self):
- super(ReduceMeanFlatten, self).__init__()
- self.mean = ops.ReduceMean(keep_dims=True)
- self.flatten = nn.Flatten()
-
- def construct(self, x):
- x = self.mean(x, (2, 3))
- x = self.flatten(x)
- return x
-
- # Check MindSpore Hub website to conclude that the last output shape is 1280.
- last_channel = 1280
-
- # The number of classes in target task is 10.
- num_classes = 10
-
- reducemean_flatten = ReduceMeanFlatten()
-
- classification_layer = nn.Dense(last_channel, num_classes)
- classification_layer.set_train(True)
-
- train_network = nn.SequentialCell([network, reducemean_flatten, classification_layer])
-
- #定义数据集加载函数。
-
-
-
- def create_cifar10dataset(dataset_path, batch_size, usage='train', shuffle=True):
- data_set = ds.Cifar10Dataset(dataset_dir=dataset_path, usage=usage, shuffle=shuffle)
-
- # define map operations
- trans = [
- vision.Resize((256, 256)),
- vision.RandomHorizontalFlip(prob=0.5),
- vision.Rescale(1.0 / 255.0, 0.0),
- vision.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]),
- vision.HWC2CHW()
- ]
-
- type_cast_op = transforms.TypeCast(mstype.int32)
-
- data_set = data_set.map(operations=type_cast_op, input_columns="label", num_parallel_workers=8)
- data_set = data_set.map(operations=trans, input_columns="image", num_parallel_workers=8)
-
- # apply batch operations
- data_set = data_set.batch(batch_size, drop_remainder=True)
- return data_set
-
- # Create Dataset
- dataset_path = "/path_to_dataset/cifar-10-batches-bin"
- dataset = create_cifar10dataset(dataset_path, batch_size=32, usage='train', shuffle=True)
-
- #为模型训练选择损失函数、优化器和学习率。
-
- def generate_steps_lr(lr_init, steps_per_epoch, total_epochs):
- total_steps = total_epochs * steps_per_epoch
- decay_epoch_index = [0.3*total_steps, 0.6*total_steps, 0.8*total_steps]
- lr_each_step = []
- for i in range(total_steps):
- if i < decay_epoch_index[0]:
- lr = lr_init
- elif i < decay_epoch_index[1]:
- lr = lr_init * 0.1
- elif i < decay_epoch_index[2]:
- lr = lr_init * 0.01
- else:
- lr = lr_init * 0.001
- lr_each_step.append(lr)
- return lr_each_step
-
- # Set epoch size
- epoch_size = 60
-
- # Wrap the backbone network with loss.
- loss_fn = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
- loss_net = nn.WithLossCell(train_network, loss_fn)
- steps_per_epoch = dataset.get_dataset_size()
- lr = generate_steps_lr(lr_init=0.01, steps_per_epoch=steps_per_epoch, total_epochs=epoch_size)
-
- # Create an optimizer.
- optim = Momentum(filter(lambda x: x.requires_grad, classification_layer.get_parameters()), Tensor(lr, mindspore.float32), 0.9, 4e-5)
- train_net = nn.TrainOneStepCell(loss_net, optim)
-
- #开始重训练。
-
- for epoch in range(epoch_size):
- for i, items in enumerate(dataset):
- data, label = items
- data = mindspore.Tensor(data)
- label = mindspore.Tensor(label)
-
- loss = train_net(data, label)
- print(f"epoch: {epoch}/{epoch_size}, loss: {loss}")
- # Save the ckpt file for each epoch.
- if not os.path.exists('ckpt'):
- os.mkdir('ckpt')
- ckpt_path = f"./ckpt/cifar10_finetune_epoch{epoch}.ckpt"
- save_checkpoint(train_network, ckpt_path)
-
- #在测试集上测试模型精度。
-
- model = "mindspore/1.6/mobilenetv2_imagenet2012"
-
- network = mshub.load(model, num_classes=500, pretrained=True, include_top=False, activation="Sigmoid")
- network.set_train(False)
- reducemean_flatten = ReduceMeanFlatten()
- classification_layer = nn.Dense(last_channel, num_classes)
- classification_layer.set_train(False)
- softmax = nn.Softmax()
- network = nn.SequentialCell([network, reducemean_flatten, classification_layer, softmax])
-
- # Load a pre-trained ckpt file.
- ckpt_path = "./ckpt/cifar10_finetune_epoch59.ckpt"
- trained_ckpt = load_checkpoint(ckpt_path)
- load_param_into_net(classification_layer, trained_ckpt)
-
- loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
-
- # Define loss and create model.
- eval_dataset = create_cifar10dataset(dataset_path, batch_size=32, do_train=False)
- eval_metrics = {'Loss': nn.Loss(),
- 'Top1-Acc': nn.Top1CategoricalAccuracy(),
- 'Top5-Acc': nn.Top5CategoricalAccuracy()}
- model = Model(network, loss_fn=loss, optimizer=None, metrics=eval_metrics)
- metrics = model.eval(eval_dataset)
- print("metric: ", metrics)

- #将你的预训练模型托管在可以访问的存储位置。参照模板,在你自己的代码仓中添加模型生成文件mindspore_hub_conf.py,文件放置的位置如下:
-
- googlenet
- ├── src
- │ ├── googlenet.py
- ├── script
- │ ├── run_train.sh
- ├── train.py
- ├── test.py
- ├── mindspore_hub_conf.py
-
- #参照模板,在hub/mshub_res/assets/mindspore/1.6文件夹下创建{model_name}_{dataset}.md文件,其中1.6为MindSpore的版本号,hub/mshub_res的目录结构为:
-
- hub
- ├── mshub_res
- │ ├── assets
- │ ├── mindspore
- │ ├── 1.6
- │ ├── googlenet_cifar10.md
- │ ├── tools
- │ ├── get_sha256.py
- │ ├── load_markdown.py
- │ └── md_validator.py
本次分享完