• 多目标优化问题的研究概述(Matlab代码实现)


      🍒🍒🍒欢迎关注🌈🌈🌈

    📝个人主页:我爱Matlab


    👍点赞➕评论➕收藏 == 养成习惯(一键三连)🌻🌻🌻

    🍌希望大家多多支持🍓~一起加油 🤗

    💬语录:将来的我一定会感谢现在奋斗的自己!

    🍁🥬🕒摘要🕒🥬🍁

    本次介绍作为IDE和代码格式的聚类、回归、图像量化、图像分割、并行机器调度(PMS)、旅行商问题(TSP)和装箱问题(BPP)的七个应用。

    ✨🔎⚡部分运行结果⚡🔎✨

     

     

     

     

     

     

    💂♨️👨‍🎓Matlab代码👨‍🎓♨️💂

    % warning('off');

    clear;
    % Data=load("Data.csv");
    % Inputs=Data(:,1:end-1);
    % Targets=Data(:,end);
    %% Input Model 
    % Display uigetfile dialog
    filterspec = {'*.csv'};
    [f, p] = uigetfile(filterspec);
    fileadd=fullfile(p,f);
    filecon=load(fileadd);
    Inputs=filecon(:,1:end-1);
    Targets=filecon(:,end);

    %% Learning 

    n = 9; % Neurons

    %----------------------------------------
    % 'trainlm'        Levenberg-Marquardt
    % 'trainbr'     Bayesian Regularization (good)
    % 'trainrp'      Resilient Backpropagation
    % 'traincgf'    Fletcher-Powell Conjugate Gradient
    % 'trainoss'    One Step Secant (good)
    % 'traingd'     Gradient Descent
    % Creating the NN ----------------------------
    net = feedforwardnet(n,'trainoss');

    %---------------------------------------------
    % configure the neural network for this dataset
    [net tr]= train(net,Inputs', Targets');

    perf = perform(net,Inputs, Targets); % mse
    % Current NN Weights and Bias
    Weights_Bias = getwb(net);
    % MSE Error for Current NN
    Outputs=net(Inputs');
    Outputs=Outputs';
    % Final MSE Error and Correlation Coefficients (CC)
    Err_MSE=mse(Targets,Outputs);
    CC1= corrcoef(Targets,Outputs);
    CC1= CC1(1,2);

    %-----------------------------------------------------
    %% Nature Inspired Regression
    % Create Handle for Error
    h = @(x) MSEHandle(x, net, Inputs', Targets');
    tic
    sizenn=size(Inputs);sizenn=sizenn(1,1);
    %-----------------------------------------
    %% Please select
    MaxIt = 5;       % Maximum Number of Iterations
    nPop = 5;        % Population Size 

    [x,err,BestCost] = hs(h, sizenn*n+n+n+1,MaxIt,nPop);

    % Plot ITR
    % figure;
    plot(BestCost,'k', 'LineWidth', 2);
    xlabel('ITR');
    ylabel('Cost Value');
    ax = gca; 
    ax.FontSize = 14; 
    ax.FontWeight='bold';
    set(gca,'Color','c')
    grid on;

    %%-------------------------------------------------------------------------
    net = setwb(net, x');
    % Optimized NN Weights and Bias
    getwb(net);
    % Error for Optimized NN
    Outputs2=net(Inputs');
    Outputs2=Outputs2';
    % Final MSE Error and Correlation Coefficients (CC)
    Err_MSE2=mse(Targets,Outputs2);
    CC2= corrcoef(Targets,Outputs2);
    CC2= CC2(1,2);

    %% Plot Regression
    f = figure;  
    f.Position = [100 100 700 550]; 
    % Metaheuristics
    subplot(3,1,1)
    [population3,gof3] = fit(Targets,Outputs2,'poly3');
    plot(Targets,Outputs2,'o',...
    'LineWidth',1,...
    'MarkerSize',8,...
    'MarkerEdgeColor','g',...
    'MarkerFaceColor',[0.9,0.3,0.1]);
    title(['R =  ' num2str(1-gof3.rmse)],['MSE =  ' num2str(Err_MSE2)]); 
    hold on
    plot(population3,'b-','predobs');
    xlabel('Targets');ylabel('Outputs');   grid on;
    ax = gca; 
    ax.FontSize = 12; ax.LineWidth=2;
    % legend({'Regression'},'FontSize',12,'TextColor','blue');hold off
    subplot(3,1,2)
    % Error
    Errors=Targets-Outputs2;
    ErrorMean=mean(Errors);
    ErrorStd=std(Errors);
    subplot(3,1,2);
    plot(Targets,'m');hold on;
    plot(Outputs2,'k');legend('Target','Output');
    title('Training Part');xlabel('Sample Index');grid on;
    subplot(3,1,3);
    h=histfit(Errors, 50);
    h(1).FaceColor = [.3 .8 0.3];
    title(['Train Error Mean =    ' num2str(ErrorMean) '   ,' ...
        '   Train Error STD =    ' num2str(ErrorStd)]);grid on;

    % Correlation Coefficients
    % fprintf('Normal Correlation Coefficients Is =  %0.4f.\n',CC1);
    fprintf('New Correlation Coefficients Is =  %0.4f.\n',CC2);
    toc

    📜📢🌈参考文献🌈📢📜

    [1]公茂果,焦李成,杨咚咚,马文萍.进化多目标优化算法研究[J].软件学报,2009,20(02):271-289.

    [2]肖晓伟,肖迪,林锦国,肖玉峰.多目标优化问题的研究概述[J].计算机应用研究,2011,28(03):805-808+827.

  • 相关阅读:
    自定义Kotlin协程调度器
    基于抽象语法树的神经网络模型(ASTNN)简介
    【JavaEE-Servlet】Filter过滤器详解
    Matlab零基础入门
    Vue.js 事件监听全解析
    优雅编码!Java与MongoDB的创新数据库架构
    兽用白油疫苗——博迈伦
    定时器之编码器模式
    大学生HTML期末作业网页:使用DIV+CSS技术制作一个简单的小说网站 (3个页面 登录+注册+首页 )
    聊聊电商系统架构演进
  • 原文地址:https://blog.csdn.net/m0_73907476/article/details/127946364