Epoch 59/100
17/17 [==============================] - 1s 63ms/step - loss: 0.5240 - accuracy: 0.8296 - val_loss: 0.6141 - val_accuracy: 0.8000
Epoch 60/100
17/17 [==============================] - 1s 45ms/step - loss: 0.5175 - accuracy: 0.8333 - val_loss: 0.6084 - val_accuracy: 0.8083
Epoch 61/100
17/17 [==============================] - 1s 53ms/step - loss: 0.5093 - accuracy: 0.8352 - val_loss: 0.6047 - val_accuracy: 0.8250
Epoch 62/100
17/17 [==============================] - 1s 50ms/step - loss: 0.5044 - accuracy: 0.8370 - val_loss: 0.5991 - val_accuracy: 0.8083
Epoch 63/100
17/17 [==============================] - 1s 53ms/step - loss: 0.4981 - accuracy: 0.8333 - val_loss: 0.5955 - val_accuracy: 0.8167
Epoch 64/100
17/17 [==============================] - 1s 57ms/step - loss: 0.4902 - accuracy: 0.8380 - val_loss: 0.5926 - val_accuracy: 0.8250
Epoch 65/100
17/17 [==============================] - 1s 48ms/step - loss: 0.4853 - accuracy: 0.8444 - val_loss: 0.5882 - val_accuracy: 0.8083
Epoch 66/100
17/17 [==============================] - 1s 48ms/step - loss: 0.4794 - accuracy: 0.8472 - val_loss: 0.5839 - val_accuracy: 0.8083
Epoch 67/100
17/17 [==============================] - 1s 44ms/step - loss: 0.4724 - accuracy: 0.8519 - val_loss: 0.5809 - val_accuracy: 0.8167
Epoch 68/100
17/17 [==============================] - 1s 54ms/step - loss: 0.4680 - accuracy: 0.8528 - val_loss: 0.5760 - val_accuracy: 0.8083
Epoch 69/100
17/17 [==============================] - 1s 46ms/step - loss: 0.4623 - accuracy: 0.8546 - val_loss: 0.5719 - val_accuracy: 0.8250
Epoch 70/100
17/17 [==============================] - 1s 49ms/step - loss: 0.4559 - accuracy: 0.8574 - val_loss: 0.5692 - val_accuracy: 0.8083
Epoch 71/100
17/17 [==============================] - 1s 57ms/step - loss: 0.4518 - accuracy: 0.8593 - val_loss: 0.5650 - val_accuracy: 0.8083
Epoch 72/100
17/17 [==============================] - 1s 60ms/step - loss: 0.4452 - accuracy: 0.8620 - val_loss: 0.5624 - val_accuracy: 0.8250
Epoch 73/100
17/17 [==============================] - 1s 52ms/step - loss: 0.4415 - accuracy: 0.8639 - val_loss: 0.5590 - val_accuracy: 0.8167
Epoch 74/100
17/17 [==============================] - 1s 55ms/step - loss: 0.4361 - accuracy: 0.8648 - val_loss: 0.5554 - val_accuracy: 0.8250
Epoch 75/100
17/17 [==============================] - 1s 58ms/step - loss: 0.4298 - accuracy: 0.8704 - val_loss: 0.5528 - val_accuracy: 0.8333
Epoch 76/100
17/17 [==============================] - 1s 62ms/step - loss: 0.4262 - accuracy: 0.8685 - val_loss: 0.5490 - val_accuracy: 0.8250
Epoch 77/100
17/17 [==============================] - 1s 48ms/step - loss: 0.4215 - accuracy: 0.8713 - val_loss: 0.5460 - val_accuracy: 0.8250
Epoch 78/100
17/17 [==============================] - 1s 46ms/step - loss: 0.4151 - accuracy: 0.8787 - val_loss: 0.5436 - val_accuracy: 0.8250
Epoch 79/100
17/17 [==============================] - 1s 43ms/step - loss: 0.4113 - accuracy: 0.8787 - val_loss: 0.5407 - val_accuracy: 0.8167
Epoch 80/100
17/17 [==============================] - 1s 43ms/step - loss: 0.4062 - accuracy: 0.8806 - val_loss: 0.5384 - val_accuracy: 0.8167
Epoch 81/100
17/17 [==============================] - 1s 48ms/step - loss: 0.4020 - accuracy: 0.8806 - val_loss: 0.5348 - val_accuracy: 0.8167
Epoch 82/100
17/17 [==============================] - 1s 50ms/step - loss: 0.3962 - accuracy: 0.8824 - val_loss: 0.5323 - val_accuracy: 0.8167
Epoch 83/100
17/17 [==============================] - 1s 45ms/step - loss: 0.3927 - accuracy: 0.8824 - val_loss: 0.5297 - val_accuracy: 0.8250
Epoch 84/100
17/17 [==============================] - 1s 51ms/step - loss: 0.3881 - accuracy: 0.8843 - val_loss: 0.5272 - val_accuracy: 0.8250
Epoch 85/100
17/17 [==============================] - 1s 46ms/step - loss: 0.3832 - accuracy: 0.8870 - val_loss: 0.5249 - val_accuracy: 0.8250
Epoch 86/100
17/17 [==============================] - 1s 53ms/step - loss: 0.3796 - accuracy: 0.8898 - val_loss: 0.5215 - val_accuracy: 0.8250
Epoch 87/100
17/17 [==============================] - 1s 56ms/step - loss: 0.3743 - accuracy: 0.8889 - val_loss: 0.5196 - val_accuracy: 0.8250
Epoch 88/100
17/17 [==============================] - 1s 48ms/step - loss: 0.3710 - accuracy: 0.8907 - val_loss: 0.5164 - val_accuracy: 0.8250
Epoch 89/100
17/17 [==============================] - 1s 45ms/step - loss: 0.3660 - accuracy: 0.8917 - val_loss: 0.5139 - val_accuracy: 0.8333
Epoch 90/100
17/17 [==============================] - 1s 45ms/step - loss: 0.3626 - accuracy: 0.8917 - val_loss: 0.5106 - val_accuracy: 0.8333
Epoch 91/100
17/17 [==============================] - 1s 48ms/step - loss: 0.3579 - accuracy: 0.8944 - val_loss: 0.5090 - val_accuracy: 0.8500
Epoch 92/100
17/17 [==============================] - 1s 49ms/step - loss: 0.3547 - accuracy: 0.8935 - val_loss: 0.5060 - val_accuracy: 0.8417
Epoch 93/100
17/17 [==============================] - 1s 44ms/step - loss: 0.3501 - accuracy: 0.8944 - val_loss: 0.5038 - val_accuracy: 0.8500
Epoch 94/100
17/17 [==============================] - 1s 47ms/step - loss: 0.3468 - accuracy: 0.8954 - val_loss: 0.5014 - val_accuracy: 0.8417
Epoch 95/100
17/17 [==============================] - 1s 43ms/step - loss: 0.3424 - accuracy: 0.8954 - val_loss: 0.4996 - val_accuracy: 0.8500
Epoch 96/100
17/17 [==============================] - 1s 64ms/step - loss: 0.3395 - accuracy: 0.8963 - val_loss: 0.4970 - val_accuracy: 0.8417
Epoch 97/100
17/17 [==============================] - 1s 47ms/step - loss: 0.3351 - accuracy: 0.9000 - val_loss: 0.4950 - val_accuracy: 0.8417
Epoch 98/100
17/17 [==============================] - 1s 54ms/step - loss: 0.3323 - accuracy: 0.8981 - val_loss: 0.4933 - val_accuracy: 0.8333
Epoch 99/100
17/17 [==============================] - 1s 48ms/step - loss: 0.3280 - accuracy: 0.9000 - val_loss: 0.4916 - val_accuracy: 0.8417
Epoch 100/100
17/17 [==============================] - 1s 57ms/step - loss: 0.3251 - accuracy: 0.9028 - val_loss: 0.4894 - val_accuracy: 0.8333
history对象是.fit()操作的输出,并提供内存中所有损失和度量值的记录。它存储为字典,您可以在history中检索。history:
{'loss': [1.7924431562423706,
1.7829910516738892,
1.7774927616119385,
1.7714649438858032,
1.7632440328598022,
1.7526339292526245,
1.7386524677276611,
1.7180964946746826,
1.6927790641784668,
1.662406325340271,
1.6234209537506104,
1.5787827968597412,
1.530578374862671,
1.4795559644699097,
1.4249759912490845,
1.366114616394043,
1.306186556816101,
1.2475863695144653,
1.1895930767059326,
1.1388928890228271,
1.097584843635559,
1.0567398071289062,
1.022887110710144,
0.988143265247345,
0.958622932434082,
0.9344858527183533,
0.9079993367195129,
0.885870635509491,
0.8637591600418091,
0.8459751605987549,
0.8278167247772217,
0.8083643913269043,
0.7896391153335571,
0.7741439938545227,
0.7585340142250061,
0.7439262866973877,
0.7297463417053223,
0.7170448303222656,
0.7035995125770569,
0.6920593976974487,
0.679717481136322,
0.6682245135307312,
0.6566773653030396,
0.6468732953071594,
0.636225163936615,
0.6263309121131897,
0.6172266602516174,
0.6075870990753174,
0.5992370247840881,
0.590358316898346,
0.5821788907051086,
0.5736473798751831,
0.5663847327232361,
0.5585536956787109,
0.5508677959442139,
0.5444035530090332,
0.5386385917663574,
0.5295939445495605,
0.5240201354026794,
0.5174545049667358,
0.5093420743942261,
0.5043843984603882,
0.4980504810810089,
0.4902321696281433,
0.48526430130004883,
0.4794261157512665,
0.47238555550575256,
0.4679552912712097,
0.4623057246208191,
0.45586806535720825,
0.4517609477043152,
0.4452061355113983,
0.4414933919906616,
0.43607473373413086,
0.42984598875045776,
0.426226943731308,
0.42150384187698364,
0.41507458686828613,
0.411263108253479,
0.40617814660072327,
0.4020026624202728,
0.3962164521217346,
0.3927241563796997,
0.388070285320282,
0.3831581771373749,
0.3795756697654724,
0.3743235170841217,
0.370996356010437,
0.36598825454711914,
0.36259210109710693,
0.3579387068748474,
0.3546842932701111,
0.3501478433609009,
0.3468477129936218,
0.3424193859100342,
0.33947113156318665,
0.33507341146469116,
0.33227092027664185,
0.3280133008956909,
0.3250682055950165],
'accuracy': [0.18703703582286835,
0.23888888955116272,
0.25740739703178406,
0.2620370388031006,
0.31018519401550293,
0.35185185074806213,
0.3731481432914734,
0.39351850748062134,
0.42500001192092896,
0.4472222328186035,
0.4722222089767456,
0.4833333194255829,
0.5027777552604675,
0.519444465637207,
0.5370370149612427,
0.5574073791503906,
0.5694444179534912,
0.5981481671333313,
0.6277777552604675,
0.6425926089286804,
0.6518518328666687,
0.6564815044403076,
0.6685185432434082,
0.6722221970558167,
0.6879629492759705,
0.6953703761100769,
0.7009259462356567,
0.7120370268821716,
0.7212963104248047,
0.7324073910713196,
0.7388888597488403,
0.7425925731658936,
0.7509258985519409,
0.7537037134170532,
0.7564814686775208,
0.7638888955116272,
0.769444465637207,
0.7740740776062012,
0.7731481194496155,
0.7824074029922485,
0.7842592597007751,
0.7916666865348816,
0.7962962985038757,
0.7990740537643433,
0.8009259104728699,
0.8018518686294556,
0.8064814805984497,
0.8083333373069763,
0.8101851940155029,
0.8092592358589172,
0.8120370507240295,
0.8157407641410828,
0.8203703761100769,
0.8194444179534912,
0.8203703761100769,
0.8222222328186035,
0.8222222328186035,
0.8296296000480652,
0.8296296000480652,
0.8333333134651184,
0.835185170173645,
0.8370370268821716,
0.8333333134651184,
0.8379629850387573,
0.8444444537162781,
0.8472222089767456,
0.8518518805503845,
0.8527777791023254,
0.854629635810852,
0.8574073910713196,
0.8592592477798462,
0.8620370626449585,
0.8638888597488403,
0.864814817905426,
0.8703703880310059,
0.8685185313224792,
0.8712962865829468,
0.8787037134170532,
0.8787037134170532,
0.8805555701255798,
0.8805555701255798,
0.8824074268341064,
0.8824074268341064,
0.8842592835426331,
0.8870370388031006,
0.8898147940635681,
0.8888888955116272,
0.8907407522201538,
0.8916666507720947,
0.8916666507720947,
0.894444465637207,
0.8935185074806213,
0.894444465637207,
0.895370364189148,
0.895370364189148,
0.8962963223457336,
0.8999999761581421,
0.8981481194496155,
0.8999999761581421,
0.9027777910232544],
'val_loss': [1.7880679368972778,
1.7836401462554932,
1.7796905040740967,
1.7741940021514893,
1.7678734064102173,
1.758245825767517,
1.7452706098556519,
1.726967692375183,
1.702684998512268,
1.6717331409454346,
1.6347414255142212,
1.5910009145736694,
1.5450935363769531,
1.4938915967941284,
1.4376522302627563,
1.3787978887557983,
1.3131662607192993,
1.2557700872421265,
1.2034367322921753,
1.1515480279922485,
1.111528754234314,
1.0731432437896729,
1.0447036027908325,
1.0127633810043335,
0.9859100580215454,
0.9654880166053772,
0.9404958486557007,
0.9209955930709839,
0.8992679119110107,
0.8814808130264282,
0.8653653860092163,
0.8504172563552856,
0.8345377445220947,
0.8210867643356323,
0.8074197173118591,
0.7955043315887451,
0.7829695343971252,
0.7711904048919678,
0.759569525718689,
0.7491328120231628,
0.738180935382843,
0.7290382385253906,
0.7184242010116577,
0.7106221914291382,
0.7016199827194214,
0.6938892006874084,
0.6858749985694885,
0.6783573031425476,
0.6711333394050598,
0.6637560129165649,
0.6570908427238464,
0.6508013606071472,
0.6447855234146118,
0.6384889483451843,
0.6340672969818115,
0.6277063488960266,
0.6241180300712585,
0.6192630529403687,
0.6140884757041931,
0.6084011197090149,
0.6047238707542419,
0.5990610122680664,
0.5955398678779602,
0.5925867557525635,
0.5882076025009155,
0.5839186310768127,
0.5809137225151062,
0.5759595632553101,
0.5718620419502258,
0.5692002773284912,
0.5650399327278137,
0.5624229907989502,
0.5589754581451416,
0.5554342865943909,
0.5528450012207031,
0.548973798751831,
0.5460191965103149,
0.5436446070671082,
0.5407302379608154,
0.5384419560432434,
0.5347636938095093,
0.5323173999786377,
0.5297467112541199,
0.5271559953689575,
0.5248605608940125,
0.5214855074882507,
0.5195692181587219,
0.5163654685020447,
0.5138646960258484,
0.5105695128440857,
0.5090406537055969,
0.506039023399353,
0.5038312077522278,
0.5013726353645325,
0.4996020495891571,
0.4970282018184662,
0.49498558044433594,
0.4933158755302429,
0.49158433079719543,
0.4893797039985657],
'val_accuracy': [0.19166666269302368,
0.22499999403953552,
0.19166666269302368,
0.23333333432674408,
0.2916666567325592,
0.3499999940395355,
0.34166666865348816,
0.3333333432674408,
0.36666667461395264,
0.375,
0.4166666567325592,
0.46666666865348816,
0.5083333253860474,
0.5,
0.5416666865348816,
0.574999988079071,
0.6083333492279053,
0.5833333134651184,
0.6166666746139526,
0.6416666507720947,
0.6416666507720947,
0.625,
0.6333333253860474,
0.6416666507720947,
0.6499999761581421,
0.6499999761581421,
0.6583333611488342,
0.6666666865348816,
0.6666666865348816,
0.6666666865348816,
0.6666666865348816,
0.675000011920929,
0.6833333373069763,
0.699999988079071,
0.7083333134651184,
0.7083333134651184,
0.7083333134651184,
0.7250000238418579,
0.7333333492279053,
0.7416666746139526,
0.7583333253860474,
0.7666666507720947,
0.7749999761581421,
0.7749999761581421,
0.7749999761581421,
0.7749999761581421,
0.7833333611488342,
0.7916666865348816,
0.7916666865348816,
0.800000011920929,
0.800000011920929,
0.8083333373069763,
0.8083333373069763,
0.8083333373069763,
0.8083333373069763,
0.800000011920929,
0.800000011920929,
0.8166666626930237,
0.800000011920929,
0.8083333373069763,
0.824999988079071,
0.8083333373069763,
0.8166666626930237,
0.824999988079071,
0.8083333373069763,
0.8083333373069763,
0.8166666626930237,
0.8083333373069763,
0.824999988079071,
0.8083333373069763,
0.8083333373069763,
0.824999988079071,
0.8166666626930237,
0.824999988079071,
0.8333333134651184,
0.824999988079071,
0.824999988079071,
0.824999988079071,
0.8166666626930237,
0.8166666626930237,
0.8166666626930237,
0.8166666626930237,
0.824999988079071,
0.824999988079071,
0.824999988079071,
0.824999988079071,
0.824999988079071,
0.824999988079071,
0.8333333134651184,
0.8333333134651184,
0.8500000238418579,
0.8416666388511658,
0.8500000238418579,
0.8416666388511658,
0.8500000238418579,
0.8416666388511658,
0.8416666388511658,
0.8333333134651184,
0.8416666388511658,
0.8333333134651184]} 现在,使用history.history可视化时间损失:
df_loss_acc = pd.DataFrame(history.history)
df_loss = df_loss_acc[[' loss ' ,' val_loss ' ]]
df_loss.rename(columns ={' loss ' :' train ' ,' val_loss ' :' validation ' },inplace=True)
df_acc = df_loss_acc[[' accuracy ' ,' val_accuracy ' ]]
df_acc.rename(columns ={' accuracy ' :' train ' ,' val_accuracy ' :' validation ' },inplace=True)
df_loss.plot(title =' Model loss ' ,figsize=(12,8)).set(xlabel=' Epoch ' ,ylabel=' Loss ' )
df_acc.plot(title =' Model Accuracy ' ,figsize=(12,8)).set(xlabel=' Epoch ' ,ylabel=' Accuracy ' )
plt.show()
解答疑问
(1)为什么会出现Non-trainable params: 64
这类参数可能是因为BN层中的参数是使用均值和方差的方式更新,而无需利用反向传播法进行更新,因此在神经网络中这部分参数就可不必在网络训练中更新。
结合第一个模型和第二个模型,就可以看到把BN删去就不会出现没有被训练的模型了。