目录
- >>> import numpy as np
- >>> x=np.matrix([[1,2,3],[4,5,6]])
- >>> y=np.matrix([1,2,3,4,5,6])
- >>> print(x)
- [[1 2 3]
- [4 5 6]]
- >>> print(y)
- [[1 2 3 4 5 6]]
- >>> x[1] #注意,对矩阵来说,X[1,1]和X[1][1]的含义不一样,后者异常
- matrix([[4, 5, 6]])
- >>> x[1,1] #X[1,1]返回行下标和列下标都为1的元素
- 5
- >>> y[0]
- matrix([[1, 2, 3, 4, 5, 6]])
- >>> y[0,1]
- 2
- >>> x
- matrix([[1, 2, 3],
- [4, 5, 6]])
- >>> y
- matrix([[1, 2, 3, 4, 5, 6]])
- >>> print(x.T,y.T,sep='\n\n')
- [[1 4]
- [2 5]
- [3 6]]
-
- [[1]
- [2]
- [3]
- [4]
- [5]
- [6]]
- >>> x.T
- matrix([[1, 4],
- [2, 5],
- [3, 6]])
- >>> x=np.matrix([[1,2,3],[4,5,6]])
- >>> print(x.mean(),end='\n====\n') #所有元素平均值
- 3.5
- ====
- >>> print(x.mean(axis=0),end='\n===\n') #纵向平均值
- [[2.5 3.5 4.5]]
- ===
- >>> print(x.mean(axis=0).shape,end='\n====\n')
- (1, 3)
- ====
- >>> print(x.mean(axis=1),end='\n====\n') #横向平均值
- [[2.]
- [5.]]
- ====
- >>> print(x.sum(),end='\n====\n') #所有元素之和
- 21
- ====
- >>> print(x.max(axis=1)) #横向最大值
- [[3]
- [6]]
- >>> print(x.argmax(axis=1)) #横向最大值的下标
- [[2]
- [2]]
- >>> print(x.max(axis=0),end='\n====\n') #纵向最大值
- [[4 5 6]]
- ====
- >>> print(x.diagonal(),end='\n====\n') #对角线元素
- [[1 5]]
- ====
- >>> print(x.nonzero()) #非零元素下标,分别返回行下标和列下标
- (array([0, 0, 0, 1, 1, 1], dtype=int64), array([0, 1, 2, 0, 1, 2], dtype=int64))
- >>> A=np.matrix([[1,2,3],[4,5,6]])
- >>> print(A)
- [[1 2 3]
- [4 5 6]]
- >>> B=np.matrix([[1,2],[3,4],[5,6]])
- >>> print(B)
- [[1 2]
- [3 4]
- [5 6]]
- >>> C=A*B
- >>> print(C)
- [[22 28]
- [49 64]]
- >>> A.shape,B.shape,C.shape
- ((2, 3), (3, 2), (2, 2))
- >>> print(np.corrcoef([1,2,3,4],[4,3,2,1])) #负相关,变化方向相反
- [[ 1. -1.]
- [-1. 1.]]
- >>> print(np.corrcoef([1,2,3,4],[8,3,2,1])) #负相关,变化方向相反
- [[ 1. -0.91350028]
- [-0.91350028 1. ]]
- >>> print(np.corrcoef([1,2,3,4],[1,2,3,4])) #正相关,变化方向一致
- [[1. 1.]
- [1. 1.]]
- >>> print(np.corrcoef([1,2,3,4],[1,2,3,40])) #正相关,变化趋势接近
- [[1. 0.8010362]
- [0.8010362 1. ]]
- >>> print(np.cov([1,1,1,1,1])) #方差(自身协方差)
- 0.0
- >>> print(np.std([1,1,1,1,1])) #标准差
- 0.0
- >>> print(np.cov([1,2,1,4,1]))
- 1.7000000000000002
- >>> print(np.std([1,2,1,4,1]))
- 1.1661903789690602
- >>> x=[-2.1,-1,4.3]
- >>> y=[3,1.1,0.12]
- >>> X=np.vstack((x,y)) #垂直堆叠矩阵
- >>> print(X)
- [[-2.1 -1. 4.3 ]
- [ 3. 1.1 0.12]]
- >>> print(np.cov(X)) #协方差
- [[11.71 -4.286 ]
- [-4.286 2.14413333]]
- >>> print(np.cov(x,y))
- [[11.71 -4.286 ]
- [-4.286 2.14413333]]
- >>> print(np.cov(x))
- 11.709999999999999
- >>> print(np.cov(y))
- 2.1441333333333334
- >>> print(np.std(x)) #标准差
- 2.794041278626117
- >>> print(np.std(x+y)) #同x标准差
- 2.2071223094538484
- >>> print(np.std(X,axis=1)) #横向标准差,相当于x,y标准差
- [2.79404128 1.19558447]
- >>> print(np.std(x)) #x标准差方差
- 2.794041278626117
- >>> print(np.std(X,axis=0))
- [2.55 1.05 2.09]
- >>>data=np.matrix([np.random.randint(1,10,5) for _ in range(6)])
- >>>newcols=np.matrix([np.random.randint(1,10,2) for _ in range(6)])
- >>>newrows=np.matrix([np.random.randint(1,10,5) for _ in range(3)])
- >>>data
- matrix([[4, 5, 8, 1, 1],
- [1, 5, 2, 1, 5],
- [5, 1, 2, 1, 9],
- [6, 1, 6, 6, 7],
- [1, 1, 5, 9, 1],
- [8, 8, 6, 2, 4]])
- >>>newcols
- matrix([[4, 2],
- [7, 3],
- [6, 1],
- [1, 1],
- [3, 8],
- [8, 9]])
- >>>newrows
- matrix([[4, 1, 3, 5, 7],
- [9, 3, 9, 8, 9],
- [8, 7, 5, 8, 5]])
- >>>np.c_[data,newcols] #在data的右侧(列)加入newcols
- matrix([[4, 5, 8, 1, 1, 4, 2],
- [1, 5, 2, 1, 5, 7, 3],
- [5, 1, 2, 1, 9, 6, 1],
- [6, 1, 6, 6, 7, 1, 1],
- [1, 1, 5, 9, 1, 3, 8],
- [8, 8, 6, 2, 4, 8, 9]])
- >>>np.c_[newcols,data] #在data左侧(列)加入newcols
- matrix([[4, 2, 4, 5, 8, 1, 1],
- [7, 3, 1, 5, 2, 1, 5],
- [6, 1, 5, 1, 2, 1, 9],
- [1, 1, 6, 1, 6, 6, 7],
- [3, 8, 1, 1, 5, 9, 1],
- [8, 9, 8, 8, 6, 2, 4]])
- >>>np.r_[data,newrows] #在data的下面(行)加入newrows
- matrix([[4, 5, 8, 1, 1],
- [1, 5, 2, 1, 5],
- [5, 1, 2, 1, 9],
- [6, 1, 6, 6, 7],
- [1, 1, 5, 9, 1],
- [8, 8, 6, 2, 4],
- [4, 1, 3, 5, 7],
- [9, 3, 9, 8, 9],
- [8, 7, 5, 8, 5]])
- >>>np.r_[newrows,data] #在data的上面(行)加入newrows
- matrix([[4, 1, 3, 5, 7],
- [9, 3, 9, 8, 9],
- [8, 7, 5, 8, 5],
- [4, 5, 8, 1, 1],
- [1, 5, 2, 1, 5],
- [5, 1, 2, 1, 9],
- [6, 1, 6, 6, 7],
- [1, 1, 5, 9, 1],
- [8, 8, 6, 2, 4]])
- >>>np.r_[data,newrows,newrows]
- matrix([[4, 5, 8, 1, 1],
- [1, 5, 2, 1, 5],
- [5, 1, 2, 1, 9],
- [6, 1, 6, 6, 7],
- [1, 1, 5, 9, 1],
- [8, 8, 6, 2, 4],
- [4, 1, 3, 5, 7],
- [9, 3, 9, 8, 9],
- [8, 7, 5, 8, 5],
- [4, 1, 3, 5, 7],
- [9, 3, 9, 8, 9],
- [8, 7, 5, 8, 5]])
- >>> np.insert(data,0,newrows,axis=0) #在data的第0行插入newrows
- matrix([[4, 1, 3, 5, 7],
- [9, 3, 9, 8, 9],
- [8, 7, 5, 8, 5],
- [4, 5, 8, 1, 1],
- [1, 5, 2, 1, 5],
- [5, 1, 2, 1, 9],
- [6, 1, 6, 6, 7],
- [1, 1, 5, 9, 1],
- [8, 8, 6, 2, 4]])
- >>> np.insert(data,3,newrows,axis=0) #在data的第三行插入newrows
- matrix([[4, 5, 8, 1, 1],
- [1, 5, 2, 1, 5],
- [5, 1, 2, 1, 9],
- [4, 1, 3, 5, 7],
- [9, 3, 9, 8, 9],
- [8, 7, 5, 8, 5],
- [6, 1, 6, 6, 7],
- [1, 1, 5, 9, 1],
- [8, 8, 6, 2, 4]])
- >>> np.insert(data,4,newcols.T,axis=1) #在data的第四列插入newcols
- matrix([[4, 5, 8, 1, 4, 2, 1],
- [1, 5, 2, 1, 7, 3, 5],
- [5, 1, 2, 1, 6, 1, 9],
- [6, 1, 6, 6, 1, 1, 7],
- [1, 1, 5, 9, 3, 8, 1],
- [8, 8, 6, 2, 8, 9, 4]])
- >>> np.insert(data,1,newcols.T,axis=1) #在data的第一列插入newcols
- matrix([[4, 4, 2, 5, 8, 1, 1],
- [1, 7, 3, 5, 2, 1, 5],
- [5, 6, 1, 1, 2, 1, 9],
- [6, 1, 1, 1, 6, 6, 7],
- [1, 3, 8, 1, 5, 9, 1],
- [8, 8, 9, 8, 6, 2, 4]])
- >>> np.row_stack((data,newrows)) #垂直(行)堆叠矩阵,与np.vstack((data,newrows))
- matrix([[4, 5, 8, 1, 1],
- [1, 5, 2, 1, 5],
- [5, 1, 2, 1, 9],
- [6, 1, 6, 6, 7],
- [1, 1, 5, 9, 1],
- [8, 8, 6, 2, 4],
- [4, 1, 3, 5, 7],
- [9, 3, 9, 8, 9],
- [8, 7, 5, 8, 5]])
- >>> np.column_stack((data,newcols)) #横着(列)堆叠矩阵
- matrix([[4, 5, 8, 1, 1, 4, 2],
- [1, 5, 2, 1, 5, 7, 3],
- [5, 1, 2, 1, 9, 6, 1],
- [6, 1, 6, 6, 7, 1, 1],
- [1, 1, 5, 9, 1, 3, 8],
- [8, 8, 6, 2, 4, 8, 9]])
- >>> np.Inf #正无穷大
- inf
- >>> np.NAN #非数字
- nan
- >>> np.Infinity
- inf
- >>> np.MAXDIMS
- 32
- >>> np.NINF #负无穷大
- -inf
- >>> np.NaN
- nan
- >>> np.NZERO #负0
- -0.0
- >>> x=np.matrix(np.arange(0,10).reshape(2,5)) #二维矩阵
- >>> x
- matrix([[0, 1, 2, 3, 4],
- [5, 6, 7, 8, 9]])
- >>> x.sum() #所有元素之和
- 45
- >>> x.sum(axis=0) #纵向求和
- matrix([[ 5, 7, 9, 11, 13]])
- >>> x.sum(axis=1) #横向求和
- matrix([[10],
- [35]])
- >>> x.mean() #平均值
- 4.5
- >>> x.mean(axis=1)
- matrix([[2.],
- [7.]])
- >>> x.mean(axis=0)
- matrix([[2.5, 3.5, 4.5, 5.5, 6.5]])
- >>> weight=[0.3,0.7] #权重
- >>> np.average(x,axis=0,weights=weight)
- matrix([[3.5, 4.5, 5.5, 6.5, 7.5]])
- >>> x.max() #所有元素最大值
- 9
- >>> x.max(axis=0) #纵向最大值
- matrix([[5, 6, 7, 8, 9]])
- >>> x.max(axis=1) #横向最大值
- matrix([[4],
- [9]])
- >>> x=np.matrix(np.random.randint(0,10,size=(3,3)))
- >>> x
- matrix([[3, 7, 7],
- [7, 0, 9],
- [4, 0, 8]])
- >>> x.std() #标准差
- 3.197221015541813
- >>> x.std(axis=1) #横向标准差
- matrix([[1.88561808],
- [3.8586123 ],
- [3.26598632]])
- >>> x.std(axis=0) #纵向标准差
- matrix([[1.69967317, 3.29983165, 0.81649658]])
- >>> x.var(axis=0) #纵向方差
- matrix([[ 2.88888889, 10.88888889, 0.66666667]])
- >>> x.sort(axis=0) #纵向排序
- >>> x
- matrix([[3, 0, 7],
- [4, 0, 8],
- [7, 7, 9]])
- >>> x.sort(axis=1) #横向排序
- >>> x
- matrix([[0, 3, 7],
- [0, 4, 8],
- [7, 7, 9]])
- >>> def numpyPI(times):
- ... x=np.random.rand(times)
- ... y=np.random.rand(times)
- ... hits=np.sum(x**2+y**2<=1)
- ... pi=hits/times*4
- ... return pi
- ...
- >>> numpyPI(1000000)
- 3.143172
- >>> import numpy_financial as npf
- >>> round(npf.fv(0.05,39,-14000,-14000))#每年固定存入14000元,年利率固定为5%,40年后的余额
- 1691197
- >>> A=np.array([[1,-3,3],[3,-5,3],[6,-6,4]])
- >>> print(A)
- [[ 1 -3 3]
- [ 3 -5 3]
- [ 6 -6 4]]
- >>> e,v=np.linalg.eig(A) #特征值与特征向量
- >>> print(e)
- [ 4.+0.00000000e+00j -2.+1.10465796e-15j -2.-1.10465796e-15j]
- >>> print(v)
- [[-0.40824829+0.j 0.24400118-0.40702229j 0.24400118+0.40702229j]
- [-0.40824829+0.j -0.41621909-0.40702229j -0.41621909+0.40702229j]
- [-0.81649658+0.j -0.66022027+0.j -0.66022027-0.j ]]
- >>> print(np.linalg.eig)
0x0000027435CD67A0> - >>> print(np.linalg.eigvals(A))
- [ 4.+0.00000000e+00j -2.+1.10465796e-15j -2.-1.10465796e-15j]
- >>> print(e*v) #特征值与特征向量的乘积
- [[-1.63299316+0.00000000e+00j -0.48800237+8.14044580e-01j
- -0.48800237-8.14044580e-01j]
- [-1.63299316+0.00000000e+00j 0.83243817+8.14044580e-01j
- 0.83243817-8.14044580e-01j]
- [-3.26598632+0.00000000e+00j 1.32044054-7.29317578e-16j
- 1.32044054+7.29317578e-16j]]
- >>> print(np.isclose(np.dot(A,v),e*v)) #检验二者是否相等
- [[ True True True]
- [ True True True]
- [ True True True]]
- >>> print(np.linalg.det(A-np.eye(3,3)*e)) #行列式|A-λE|的值应为0
- 5.965152994198125e-14j
- >>> x=np.matrix([[1,2,3],[4,5,6],[7,8,0]])
- >>> y=np.linalg.inv(x) #计算x逆矩阵
- >>> print(y)
- [[-1.77777778 0.88888889 -0.11111111]
- [ 1.55555556 -0.77777778 0.22222222]
- [-0.11111111 0.22222222 -0.11111111]]
- >>> print(x*y) #对角元素为1,其他元素为0或者近似为0
- [[ 1.00000000e+00 5.55111512e-17 1.38777878e-17]
- [ 5.55111512e-17 1.00000000e+00 2.77555756e-17]
- [ 1.77635684e-15 -8.88178420e-16 1.00000000e+00]]
- >>> print(np.round(y*x))
- [[ 1. -0. 0.]
- [ 0. 1. 0.]
- [ 0. 0. 1.]]
- >>> a=np.array([[3,1],[1,2]]) #系数矩阵
- >>> b=np.array([9,8])
- >>> x=np.linalg.solve(a,b) #求解
- >>> print(x)
- [2. 3.]
- >>> print(np.dot(a,x)) #验证
- [9. 8.]
- >>> print(np.linalg.lstsq(a,b)) #最小二乘解(返回解、余项、a的秩、a的奇异值)
-
- Warning (from warnings module):
- File "
" , line 1 - FutureWarning: `rcond` parameter will change to the default of machine precision times ``max(M, N)`` where M and N are the input matrix dimensions.
- To use the future default and silence this warning we advise to pass `rcond=None`, to keep using the old, explicitly pass `rcond=-1`.
- (array([2., 3.]), array([], dtype=float64), 2, array([3.61803399, 1.38196601]))
- >>> print(np.linalg.matrix_rank(a)) #a的秩
- 2
- >>> U,sv,V=np.linalg.svd(a,full_matrices=False) #奇异值分解
- >>> print(sv) #a的奇异值
- [3.61803399 1.38196601]
- >>> print(U)
- [[-0.85065081 -0.52573111]
- [-0.52573111 0.85065081]]
- >>> print(V)
- [[-0.85065081 -0.52573111]
- [-0.52573111 0.85065081]]
- >>> x=np.matrix([[1,2],[3,-4]])
- >>> np.linalg.norm(x) #F范数=(1**2+2**2+3**2+(-4)**2)**0.5
- 5.477225575051661
- >>> np.linalg.norm(x,-2) #smallest singular value
- 1.9543950758485487
- >>> np.linalg.norm(x,-1) #min(sum(abs(x),axis=0))
- 4.0
- >>> np.linalg.norm(x,1) #max(sum(abs(x),axis=0))
- 6.0
- >>> np.linalg.norm(np.array([1,2,3,4]),3)
- 4.641588833612778
- >>> np.linalg.matrix_power([[1,2],[3,4]],2) #自乘2次
- array([[ 7, 10],
- [15, 22]])
- >>> np.linalg.matrix_power([[1,2],[3,4]],5) #自乘5次
- array([[1069, 1558],
- [2337, 3406]])
- >>> x=np.matrix([[1,2],[3,4]])
- >>> x**2 #也可以直接使用运算符**
- matrix([[ 7, 10],
- [15, 22]])
- >>> x**5
- matrix([[1069, 1558],
- [2337, 3406]])
- >>> a=np.arange(60).reshape(5,-1)
- >>> a
- array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11],
- [12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23],
- [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35],
- [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47],
- [48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59]])
- >>> U,s,V=np.linalg.svd(a,full_matrices=False)
- >>> np.dot(U,np.dot(np.diag(s),V))
- array([[2.32096525e-15, 1.00000000e+00, 2.00000000e+00, 3.00000000e+00,
- 4.00000000e+00, 5.00000000e+00, 6.00000000e+00, 7.00000000e+00,
- 8.00000000e+00, 9.00000000e+00, 1.00000000e+01, 1.10000000e+01],
- [1.20000000e+01, 1.30000000e+01, 1.40000000e+01, 1.50000000e+01,
- 1.60000000e+01, 1.70000000e+01, 1.80000000e+01, 1.90000000e+01,
- 2.00000000e+01, 2.10000000e+01, 2.20000000e+01, 2.30000000e+01],
- [2.40000000e+01, 2.50000000e+01, 2.60000000e+01, 2.70000000e+01,
- 2.80000000e+01, 2.90000000e+01, 3.00000000e+01, 3.10000000e+01,
- 3.20000000e+01, 3.30000000e+01, 3.40000000e+01, 3.50000000e+01],
- [3.60000000e+01, 3.70000000e+01, 3.80000000e+01, 3.90000000e+01,
- 4.00000000e+01, 4.10000000e+01, 4.20000000e+01, 4.30000000e+01,
- 4.40000000e+01, 4.50000000e+01, 4.60000000e+01, 4.70000000e+01],
- [4.80000000e+01, 4.90000000e+01, 5.00000000e+01, 5.10000000e+01,
- 5.20000000e+01, 5.30000000e+01, 5.40000000e+01, 5.50000000e+01,
- 5.60000000e+01, 5.70000000e+01, 5.80000000e+01, 5.90000000e+01]])
- >>> np.allclose(a,np.dot(U,np.dot(np.diag(s),V)))
- True
- >>> a=[[1,2],[3,4]]
- >>> np.linalg.det(a)
- -2.0000000000000004
- >>> a=np.array([[[1,2],[3,4]],[[1,2],[2,1]],[[1,3],[3,1]]])
- >>> np.linalg.det(a)
- array([-2., -3., -8.])
- >>> a=np.matrix([[1,2,3],[4,5,6]])
- >>> q,r=np.linalg.qr(a)
- >>> print(q,r,sep='\n\n')
- [[-0.24253563 -0.9701425 ]
- [-0.9701425 0.24253563]]
-
- [[-4.12310563 -5.33578375 -6.54846188]
- [ 0. -0.72760688 -1.45521375]]
- >>> np.dot(1,r)
- matrix([[-4.12310563, -5.33578375, -6.54846188],
- [ 0. , -0.72760688, -1.45521375]])
numpy文件读写主要有二进制的文件读写和文件列表形式的数据读写两种形式
np.save("../tmp/save_arr",arr)
np.load("../tmp/save_arr.npy")
np.savez('../tmp/savez_arr',arr1,arr2)
读取文本格式的数据
np.savetxt("../tmp/arr.txt",arr,fmt="%d",delimiter=",")
np.loadtxt("../tmp/arr.txt",delimiter=",")
np.genfromtxt("../tmp/arr.txt",delimiter=",")
- >>> x=np.random.rand(4,10)
- >>> np.save('data.npy',x)
- >>> y=np.load('data.npy')
- >>> y
- array([[0.41902235, 0.69427069, 0.37598648, 0.73763434, 0.37021849,
- 0.22994088, 0.89334764, 0.04995869, 0.18538797, 0.84465261],
- [0.97907058, 0.27427357, 0.11774563, 0.90859496, 0.86412135,
- 0.643867 , 0.09459659, 0.1766268 , 0.2050061 , 0.82050625],
- [0.89201862, 0.64940355, 0.50761076, 0.79521352, 0.52232466,
- 0.85287866, 0.91648536, 0.75976614, 0.2113207 , 0.07295113],
- [0.41439073, 0.07900488, 0.52060863, 0.92372387, 0.88509664,
- 0.50123086, 0.8048252 , 0.38571732, 0.01780673, 0.87969947]])
- >>> x=np.matrix([[1,2,3],[4,5,6]])
- >>> x
- matrix([[1, 2, 3],
- [4, 5, 6]])
- >>> np.savetxt('x.txt',x)
- >>> np.loadtxt('x.txt')
- array([[1., 2., 3.],
- [4., 5., 6.]])
- >>> with open('x.txt') as fp:
- ... print(fp.read())
- ...
- ...
- 1.000000000000000000e+00 2.000000000000000000e+00 3.000000000000000000e+00
- 4.000000000000000000e+00 5.000000000000000000e+00 6.000000000000000000e+00
- >>> a_mat=np.matrix([3,5,7])
- >>> a_mat.tostring()
- Warning (from warnings module):
- File "
" , line 1 - DeprecationWarning: tostring() is deprecated. Use tobytes() instead.
- b'\x03\x00\x00\x00\x05\x00\x00\x00\x07\x00\x00\x00'
- >>> a_mat.dumps() #dumps()方法用于将数据进行序列化
- b'\x80\x02cnumpy.core.multiarray\n_reconstruct\nq\x00cnumpy\nmatrix\nq\x01K\x00\x85q\x02c_codecs\nencode\nq\x03X\x01\x00\x00\x00bq\x04X\x06\x00\x00\x00latin1q\x05\x86q\x06Rq\x07\x87q\x08Rq\t(K\x01K\x01K\x03\x86q\ncnumpy\ndtype\nq\x0bX\x02\x00\x00\x00i4q\x0c\x89\x88\x87q\rRq\x0e(K\x03X\x01\x00\x00\x00
- >>> np.loads(_) #loads()方法用于反序列化,还原为原来的信息
- Traceback (most recent call last):
- File "
" , line 1, in - np.loads(_)
- File "E:\python 3.7\lib\site-packages\numpy\__init__.py", line 311, in __getattr__
- raise AttributeError("module {!r} has no attribute "
- AttributeError: module 'numpy' has no attribute 'loads'. Did you mean: 'load'?
- >>> a_mat.dump('x.dat')
- >>> np.load('x.dat')
- Traceback (most recent call last):
- File "
" , line 1, in - np.load('x.dat')
- File "E:\python 3.7\lib\site-packages\numpy\lib\npyio.py", line 418, in load
- raise ValueError("Cannot load file containing pickled data "
- ValueError: Cannot load file containing pickled data when allow_pickle=False