• 实战!接口优化的18种方案


    前言

    大家好,我是捡田螺的小男孩

    之前工作中,遇到一个504超时问题。原因是因为接口耗时过长,超过nginx配置的10秒。然后
    真枪实弹搞了一次接口性能优化,最后接口从11.3s降为170ms。本文将跟小伙伴们分享接口优化的一些通用方案。

    1. 批量思想:批量操作数据库

    优化前:

    //for循环单笔入库
    for(TransDetail detail:transDetailList){
      insert(detail);  
    }
    
    • 1
    • 2
    • 3
    • 4

    优化后:

    batchInsert(transDetailList);
    
    • 1

    打个比喻:

    打个比喻:假如你需要搬一万块砖到楼顶,你有一个电梯,电梯一次可以放适量的砖(最多放500),
    你可以选择一次运送一块砖,也可以一次运送500,你觉得哪种方式更方便,时间消耗更少?

    2. 异步思想:耗时操作,考虑放到异步执行

    耗时操作,考虑用异步处理,这样可以降低接口耗时。

    假设一个转账接口,匹配联行号,是同步执行的,但是它的操作耗时有点长,优化前的流程:

    为了降低接口耗时,更快返回,你可以把匹配联行号移到异步处理,优化后:

    • 除了转账这个例子,日常工作中还有很多这种例子。比如:用户注册成功后,短信邮件通知,也是可以异步处理的~
    • 至于异步的实现方式,你可以用线程池,也可以用消息队列实现

    3. 空间换时间思想:恰当使用缓存。

    在适当的业务场景,恰当地使用缓存,是可以大大提高接口性能的。缓存其实就是一种空间换时间的思想,就是你把要查的数据,提前放好到缓存里面,需要时,直接查缓存,而避免去查数据库或者计算的过程

    这里的缓存包括:Redis缓存,JVM本地缓存,memcached,或者Map等等。我举个我工作中,一次使用缓存优化的设计吧,比较简单,但是思路很有借鉴的意义。

    那是一次转账接口的优化,老代码,每次转账,都会根据客户账号,查询数据库,计算匹配联行号。

    因为每次都查数据库,都计算匹配,比较耗时,所以使用缓存,优化后流程如下:

    4. 预取思想:提前初始化到缓存

    预取思想很容易理解,就是提前把要计算查询的数据,初始化到缓存。如果你在未来某个时间需要用到某个经过复杂计算的数据,才实时去计算的话,可能耗时比较大。这时候,我们可以采取预取思想,提前把将来可能需要的数据计算好,放到缓存中,等需要的时候,去缓存取就行。这将大幅度提高接口性能。

    我记得以前在第一个公司做视频直播的时候,看到我们的直播列表就是用到这种优化方案。就是启动个任务,提前把直播用户、积分等相关信息,初始化到缓存

    5. 池化思想:预分配与循环使用

    大家应该都记得,我们为什么需要使用线程池

    线程池可以帮我们管理线程,避免增加创建线程和销毁线程的资源损耗。

    如果你每次需要用到线程,都去创建,就会有增加一定的耗时,而线程池可以重复利用线程,避免不必要的耗时。 池化技术不仅仅指线程池,很多场景都有池化思想的体现,它的本质就是预分配与循环使用

    比如TCP三次握手,大家都很熟悉吧,它为了减少性能损耗,引入了Keep-Alive长连接,避免频繁的创建和销毁连接。当然,类似的例子还有很多,如数据库连接池、HttpClient连接池。

    我们写代码的过程中,学会池化思想,最直接相关的就是使用线程池而不是去new一个线程。

    6. 事件回调思想:拒绝阻塞等待。

    如果你调用一个系统B的接口,但是它处理业务逻辑,耗时需要10s甚至更多。然后你是一直阻塞等待,直到系统B的下游接口返回,再继续你的下一步操作吗?这样显然不合理

    我们参考IO多路复用模型。即我们不用阻塞等待系统B的接口,而是先去做别的操作。等系统B的接口处理完,通过事件回调通知,我们接口收到通知再进行对应的业务操作即可。

    如果大家忘记了IO模型,可以复习一下我的文章:看一遍就理解:IO模型详解

    7. 远程调用由串行改为并行

    假设我们设计一个APP首页的接口,它需要查用户信息、需要查banner信息、需要查弹窗信息等等。如果是串行一个一个查,比如查用户信息200ms,查banner信息100ms、查弹窗信息50ms,那一共就耗时350ms了,如果还查其他信息,那耗时就更大了。

    其实我们可以改为并行调用,即查用户信息、查banner信息、查弹窗信息,可以同时并行发起

    最后接口耗时将大大降低。有些小伙伴说,不知道如何使用并行优化接口?

    我之前写过一篇文章并行优化接口的文章,保姆级别的!大家可以看一下,看完会有用的:后端思维篇,手把手教你写一个并行调用模板

    8. 锁粒度避免过粗

    在高并发场景,为了防止超卖等情况,我们经常需要加锁来保护共享资源。但是,如果加锁的粒度过粗,是很影响接口性能的。

    什么是加锁粒度呢?

    其实就是就是你要锁住的范围是多大。比如你在家上卫生间,你只要锁住卫生间就可以了吧,不需要将整个家都锁起来不让家人进门吧,卫生间就是你的加锁粒度。

    不管你是synchronized加锁还是redis分布式锁,只需要在共享临界资源加锁即可,不涉及共享资源的,就不必要加锁。这就好像你上卫生间,不用把整个家都锁住,锁住卫生间门就可以了。

    比如,在业务代码中,有一个ArrayList因为涉及到多线程操作,所以需要加锁操作,假设刚好又有一段比较耗时的操作(代码中的slowNotShare方法)不涉及线程安全问题。反例加锁,就是一锅端,全锁住:

    //不涉及共享资源的慢方法
    private void slowNotShare() {
        try {
            TimeUnit.MILLISECONDS.sleep(100);
        } catch (InterruptedException e) {
        }
    }
    
    //错误的加锁方法
    public int wrong() {
        long beginTime = System.currentTimeMillis();
        IntStream.rangeClosed(1, 10000).parallel().forEach(i -> {
            //加锁粒度太粗了,slowNotShare其实不涉及共享资源
            synchronized (this) {
                slowNotShare();
                data.add(i);
            }
        });
        log.info("cosume time:{}", System.currentTimeMillis() - beginTime);
        return data.size();
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21

    正例:

    public int right() {
        long beginTime = System.currentTimeMillis();
        IntStream.rangeClosed(1, 10000).parallel().forEach(i -> {
            slowNotShare();//可以不加锁
            //只对List这部分加锁
            synchronized (data) {
                data.add(i);
            }
        });
        log.info("cosume time:{}", System.currentTimeMillis() - beginTime);
        return data.size();
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12

    9. 切换存储方式:文件中转暂存数据

    如果数据太大,落地数据库实在是慢的话,就可以考虑先用文件的方式暂存。先保存文件,再异步下载文件,慢慢保存到数据库

    这里可能会有点抽象,给大家分享一个,我之前的一个真实的优化案例吧。

    之前开发了一个转账接口。如果是并发开启,10个并发度,每个批次1000笔转账明细数据,数据库插入会特别耗时,大概6秒左右;这个跟我们公司的数据库同步机制有关,并发情况下,因为优先保证同步,所以并行的插入变成串行啦,就很耗时。

    优化前1000笔明细转账数据,先落地DB数据库,返回处理中给用户,再异步转账。如图:

    记得当时压测的时候,高并发情况,这1000笔明细入库,耗时都比较大。所以我转换了一下思路,把批量的明细转账记录保存的文件服务器,然后记录一笔转账总记录到数据库即可。接着异步再把明细下载下来,进行转账和明细入库。最后优化后,性能提升了十几倍

    优化后,流程图如下:

    如果你的接口耗时瓶颈就在数据库插入操作这里,用来批量操作等,还是效果还不理想,就可以考虑用文件或者MQ等暂存。有时候批量数据放到文件,会比插入数据库效率更高。

    10. 索引

    提到接口优化,很多小伙伴都会想到添加索引。没错,添加索引是成本最小的优化,而且一般优化效果都很不错。

    索引优化这块的话,一般从这几个维度去思考:

    • 你的SQL加索引了没?
    • 你的索引是否真的生效?
    • 你的索引建立是否合理?

    10.1 SQL没加索引

    我们开发的时候,容易疏忽而忘记给SQL添加索引。所以我们在写完SQL的时候,就顺手查看一下 explain执行计划。

    explain select * from user_info where userId like '%123';
    
    • 1

    你也可以通过命令show create table ,整张表的索引情况。

    show create table user_info;
    
    • 1

    如果某个表忘记添加某个索引,可以通过alter table add index命令添加索引

    alter table user_info add index idx_name (name);
    
    • 1

    一般就是:SQLwhere条件的字段,或者是order by 、group by后面的字段需需要添加索引。

    10.2 索引不生效

    有时候,即使你添加了索引,但是索引会失效的。田螺哥整理了索引失效的常见原因

    10.3 索引设计不合理

    我们的索引不是越多越好,需要合理设计。比如:

    • 删除冗余和重复索引。
    • 索引一般不能超过5
    • 索引不适合建在有大量重复数据的字段上、如性别字段
    • 适当使用覆盖索引
    • 如果需要使用force index强制走某个索引,那就需要思考你的索引设计是否真的合理了

    11. 优化SQL

    处了索引优化,其实SQL还有很多其他有优化的空间。比如这些:

    更详细的内容,大家可以看我之前的这两篇文章哈:

    12.避免大事务问题

    为了保证数据库数据的一致性,在涉及到多个数据库修改操作时,我们经常需要用到事务。而使用spring声明式事务,又非常简单,只需要用一个注解就行@Transactional,如下面的例子:

    @Transactional
    public int createUser(User user){
        //保存用户信息
        userDao.save(user);
        passCertDao.updateFlag(user.getPassId());
        return user.getUserId();
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7

    这块代码主要逻辑就是创建个用户,然后更新一个通行证pass的标记。如果现在新增一个需求,创建完用户,调用远程接口发送一个email消息通知,很多小伙伴会这么写:

    @Transactional
    public int createUser(User user){
        //保存用户信息
        userDao.save(user);
        passCertDao.updateFlag(user.getPassId());
        sendEmailRpc(user.getEmail());
        return user.getUserId();
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    这样实现可能会有坑,事务中嵌套RPC远程调用,即事务嵌套了一些非DB操作。如果这些非DB操作耗时比较大的话,可能会出现大事务问题

    所谓大事务问题就是,就是运行时间长的事务。由于事务一致不提交,就会导致数据库连接被占用,即并发场景下,数据库连接池被占满,影响到别的请求访问数据库,影响别的接口性能

    大事务引发的问题主要有:接口超时、死锁、主从延迟等等。因此,为了优化接口,我们要规避大事务问题。我们可以通过这些方案来规避大事务:

    • RPC远程调用不要放到事务里面
    • 一些查询相关的操作,尽量放到事务之外
    • 事务中避免处理太多数据

    13. 深分页问题

    在以前公司分析过几个接口耗时长的问题,最终结论都是因为深分页问题

    深分页问题,为什么会慢?我们看下这个SQL

    select id,name,balance from account where create_time> '2020-09-19' limit 100000,10;
    
    • 1

    limit 100000,10意味着会扫描100010行,丢弃掉前100000行,最后返回10行。即使create_time,也会回表很多次。

    我们可以通过标签记录法和延迟关联法来优化深分页问题。

    13.1 标签记录法

    就是标记一下上次查询到哪一条了,下次再来查的时候,从该条开始往下扫描。就好像看书一样,上次看到哪里了,你就折叠一下或者夹个书签,下次来看的时候,直接就翻到啦。

    假设上一次记录到100000,则SQL可以修改为:

    select  id,name,balance FROM account where id > 100000 limit 10;
    
    • 1

    这样的话,后面无论翻多少页,性能都会不错的,因为命中了id主键索引。但是这种方式有局限性:需要一种类似连续自增的字段。

    13.2 延迟关联法

    延迟关联法,就是把条件转移到主键索引树,然后减少回表。优化后的SQL如下:

    select  acct1.id,acct1.name,acct1.balance FROM account acct1 INNER JOIN (SELECT a.id FROM account a WHERE a.create_time > '2020-09-19' limit 100000, 10) AS acct2 on acct1.id= acct2.id;
    
    • 1

    优化思路就是,先通过idx_create_time二级索引树查询到满足条件的主键ID,再与原表通过主键ID内连接,这样后面直接走了主键索引了,同时也减少了回表。

    14. 优化程序结构

    优化程序逻辑、程序代码,是可以节省耗时的。比如,你的程序创建多不必要的对象、或者程序逻辑混乱,多次重复查数据库、又或者你的实现逻辑算法不是最高效的,等等。

    我举个简单的例子:复杂的逻辑条件,有时候调整一下顺序,就能让你的程序更加高效。

    假设业务需求是这样:如果用户是会员,第一次登陆时,需要发一条感谢短信。如果没有经过思考,代码直接这样写了

    if(isUserVip && isFirstLogin){
        sendSmsMsg();
    }
    
    • 1
    • 2
    • 3

    假设有5个请求过来,isUserVip判断通过的有3个请求,isFirstLogin通过的只有1个请求。 那么以上代码,isUserVip执行的次数为5次,isFirstLogin执行的次数也是3次,如下:

    如果调整一下isUserVipisFirstLogin的顺序:

    if(isFirstLogin && isUserVip ){
        sendMsg();
    }
    
    • 1
    • 2
    • 3

    isFirstLogin执行的次数是5次,isUserVip执行的次数是1次:

    酱紫程序是不是变得更高效了呢?

    15. 压缩传输内容

    压缩传输内容,传输报文变得更小,因此传输会更快啦。10M带宽,传输10k的报文,一般比传输1M的会快呀。

    打个比喻,一匹千里马,它驮着100斤的货跑得快,还是驮着10斤的货物跑得快呢?

    再举个视频网站的例子:

    如果不对视频做任何压缩编码,因为带宽又是有限的。巨大的数据量在网络传输的耗时会比编码压缩后,慢好多倍

    16. 海量数据处理,考虑NoSQL

    之前看过几个慢SQL,都是跟深分页问题有关的。发现用来标签记录法和延迟关联法,效果不是很明显,原因是要统计和模糊搜索,并且统计的数据是真的大。最后跟组长对齐方案,就把数据同步到Elasticsearch,然后这些模糊搜索需求,都走Elasticsearch去查询了。

    我想表达的就是,如果数据量过大,一定要用关系型数据库存储的话,就可以分库分表。但是有时候,我们也可以使用NoSQL,如Elasticsearch、Hbase等。

    17. 线程池设计要合理

    我们使用线程池,就是让任务并行处理,更高效地完成任务。但是有时候,如果线程池设计不合理,接口执行效率则不太理想。

    一般我们需要关注线程池的这几个参数:核心线程、最大线程数量、阻塞队列

    • 如果核心线程过小,则达不到很好的并行效果。
    • 如果阻塞队列不合理,不仅仅是阻塞的问题,甚至可能会OOM
    • 如果线程池不区分业务隔离,有可能核心业务被边缘业务拖垮

    大家可以看下我之前两篇有关于线程池的文章:

    18.机器问题 (fullGC、线程打满、太多IO资源没关闭等等)。

    有时候,我们的接口慢,就是机器处理问题。主要有fullGC、线程打满、太多IO资源没关闭等等。

    • 之前排查过一个fullGC问题: 运营小姐姐导出60多万excel的时候,说卡死了,接着我们就收到监控告警。后面排查得出,我们老代码是Apache POI生成的excel,导出excel数据量很大时,当时JVM内存吃紧会直接Full GC了。
    • 如果线程打满了,也会导致接口都在等待了。所以。如果是高并发场景,我们需要接入限流,把多余的请求拒绝掉
    • 如果IO资源没关闭,也会导致耗时增加。这个大家可以看下,平时你的电脑一直打开很多很多文件,是不是会觉得很卡。

    最后

    本文我们介绍了,优化接口的18种方案。如果对你有帮助,麻烦给田螺哥一个三连(点赞、在看、转发)。一起加油

  • 相关阅读:
    要闻 | 人大金仓重磅亮相2022南京软博会
    C/C++入门001-概述环境搭建与案例
    Jquery基础
    掌动智能分析云性能监控的重要性
    算法刷题第二天:双指针--1
    Ubuntu在终端中打开QtCreator
    HCIA HYBRID端口
    vue组件的生命周期 笔记
    Python:实现bitonic sort双调排序算法(附完整源码)
    wiresharak捕获DNS
  • 原文地址:https://blog.csdn.net/weiwenhou/article/details/127915341