1.1-详细描述了为什么时频方法在信号具有时变光谱特征或变量t和f相关的多个成分的广泛应用中是首选的理由。
1.2-提供了描述非平稳信号在时频域的时间和光谱特性所需的信号模型和数学公式。它定义了解析信号、希尔伯特变换(HT)、带宽-持续时间乘积、渐近信号等基本概念。
1.3-定义了与时频方法相关的关键量,包括瞬时频率(IF)、谱延迟(SD)和群延迟(GD)。
1.4-通过使用解析信号和中频的概念定义信号的AM/FM特性的简单教程加强了前几节的内容;并与非平稳信号的幅值和相位的定义有关。
[9] B. Boashash, G. Azemi, J.M. O’Toole, “Time-frequency processing of nonstationary signals: advanced TFD design to aid diagnosis with highlights from medical applications”, IEEE Signal Process. Mag. 30 (6) (2013) 108-119. [10] B. Boashash, N.A. Khan, T. Ben-Jabeur, “Time-frequency features for pattern recognition using high resolution TFDs: a tutorial review”, Digital Signal Process. 40 (2015) 1-30, http://dx.doi.org/ 10.1016/j.dsp.2014.12.015. [11] B. Boashash, G. Azemi, N.A. Khan, “Principles of time-frequency feature extraction for change detection in non-stationary signals: applications to newborn EEG abnormality detection”, Pattern Recog. 48 (3) (2015) 616-627.