✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。
🍎个人主页:Matlab科研工作室
🍊个人信条:格物致知。
更多Matlab仿真内容点击👇
传统的单隐层神经网络由三部分组成,分别是输入层、隐含层和输出层,输入层神经元节点个数即输入变量的个数,隐含层节点个数则需要人为给定,输出层节点个数也就是输出变量的个数。在2006年,新加坡南洋理工大学的Huang等[16]在传统的单隐层神经网络的基础上提出了一种新的前馈神经网络学习算法,命名为极限学习机(extremelearningmachine,ELM),不同于传统的基于梯度的前馈神经网络算法,该方法随机产生隐含层与输入层之间的连接权值及隐含层神经元的阈值,训练过程中只需要设置隐含神经元的个数便可获得唯一最优解,极限学习机网络结构如图1所示。
[O,TestingAccuracy,TestingTime]=ELMtest(xts,yts,ActivationFunType,W,b,OutputWeights);
% testing accuracy
Ets=[Ets TestingAccuracy];
% number of used hiddden nodes
num = num+len;
% used hidden nodes in each step
nodes(count)=node+len;
% stor
node=nodes(count);
end
end_time_training = cputime;
[1]王付广. 基于ELM的滚动轴承退化趋势与剩余寿命预测方法研究[D]. 安徽工业大学.
❤️ 关注我领取海量matlab电子书和数学建模资料
❤️部分理论引用网络文献,若有侵权联系博主删除