想象下 假设 JD上有上千万商品,现在要求你 说出 包含 手机 的商品有哪些(并说出商品ID,商品图片地址,商品价格,商品的名称)? 也就是说实现JD的搜索的功能你怎么办?
SSM的缺点:
+ 搜索精度不高
+ 搜索的速度太慢,主要是正向搜索的方式
可以使用elasticsearch解决上面的问题:
+分词器 精度提高
+倒排索引 方式极大提高搜索速度
elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容。
例如:
在GitHub搜索代码
在电商网站搜索商品
在百度搜索答案
在打车软件搜索附近的车
elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域:
而elasticsearch是elastic stack的核心,负责存储、搜索、分析数据。
elasticsearch底层是基于lucene来实现的。
Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发。官网地址:https://lucene.apache.org/ 。
elasticsearch的发展历史:
虽然在早期,Apache Solr是最主要的搜索引擎技术,但随着发展elasticsearch已经渐渐超越了Solr,独占鳌头:
什么是elasticsearch?
什么是elastic stack(ELK)?
什么是Lucene?
那么什么是正向索引呢?例如给下表(tb_goods)中的id创建索引:
如果是根据id查询,那么直接走索引,查询速度非常快。
但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:
1)用户搜索数据,条件是title符合"%手机%"
2)逐行获取数据,比如id为1的数据
3)判断数据中的title是否符合用户搜索条件
4)如果符合则放入结果集,不符合则丢弃。回到步骤1
逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。
倒排索引中有两个非常重要的概念:
Document
):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息Term
):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条创建倒排索引是对正向索引的一种特殊处理,流程如下:
倒排索引的搜索流程如下(以搜索"华为手机"为例):
1)用户输入条件"华为手机"
进行搜索。
2)对用户输入内容分词,得到词条:华为
、手机
。
3)拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。默认采用的是并集
4)拿着文档id到正向索引中查找具体文档。
虽然要先查询倒排索引,再查询倒排索引,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描。
那么为什么一个叫做正向索引,一个叫做倒排索引呢?
正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程。
而倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是根据词条找文档的过程。
()类比理解如下:
elasticsearch中有很多独有的概念,与mysql中略有差别,但也有相似之处。比如:
索引(索引库)
文档
字段
映射
类型(这个已经去掉了,默认采用_doc来使用)
我们经常会用 MySQL 的知识来理解 es 的一些概念,比如将 es 的 index 类比成 database,将 type 类比成 table,但这个比喻实际上是不准确的。在 MySQL 中,table 之间是相互独立的,每个表有自己的 schema,每个表都可以有相同的列名,同时支持不同的类型,比如表 A 的 age 列是 tinyint,而表 B 的 age 列是 varchar(10),但在 es 中,相同名字的字段的 mapping 定义必须是一致的,因为在底层 Lucene 只会存一份。
官方文档说明:
https://www.elastic.co/guide/en/elasticsearch/reference/current/removal-of-types.html
elasticsearch是面向文档(Document)就是说ES存储的都是JSON数据存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中
而Json文档中往往包含很多的字段(Field),类似于数据库中的列。
索引(Index),就是相同类型的文档的集合。索引类似数据库中的表,都是为了对数据分类。
例如:
因此,我们可以把索引当做是数据库中的表。
数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有**映射(mapping)**这样的概念,是索引中文档的字段约束信息,类似表的结构约束。
我们统一的把mysql与elasticsearch的概念做一下对比:
MySQL | Elasticsearch | 说明 |
---|---|---|
Table | Index | 索引(index),就是文档的集合,类似数据库的表(table) |
Row | Document | 文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式 |
Column | Field | 字段(Field),就是JSON文档中的字段,类似数据库中的列(Column) |
Schema(DDL) | Mapping | Mapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema) |
SQL | DSL | DSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD |
DSL 是 Domain Specific Language 的缩写,中文翻译为领域特定语言
是不是说,我们学习了elasticsearch就不再需要mysql了呢?
并不是如此,两者各自有自己的擅长:
Mysql:擅长事务类型操作,可以确保数据的安全和一致性
Elasticsearch:擅长海量数据的搜索、分析、计算
因此在企业中,往往是两者结合使用:
分词器的作用是什么?
IK分词器有几种模式?
IK分词器如何拓展词条?如何停用词条?
索引库就类似数据库表,mapping映射就类似表的结构。我们要向es中存储数据,必须先创建“库”和“表”。就需要编写DDL语句实现创建库和表。之前我们对比理解过 mapping等同于数据库中DDL。
mapping是对索引库中文档的约束,具体的映射针对的是字段。常见的mapping属性包括:
属性名 | 描述 |
---|---|
type | 字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址) long、integer、short、byte、double、float、 boolean 、date 、object |
index | 是否创建索引,默认为true |
analyzer | 使用哪种分词器(前提是:要分词 才需要指定分词器) |
properties | 该字段的子字段 |
https://www.elastic.co/guide/en/elasticsearch/reference/7.12/mapping-types.html
举例拿常见的属性理解如下:
具体的映射 注意 举例子针对 Field(数据库中的列)来说 包括常见的属性
+ 是否分词 分词的目的是为了要去建立倒排索引
+ 分词器是什么 根据需要确定
+ 数据类型什么 根据需求来确定
+ 是否要索引 要索引的目的是为了快速的搜索
如下商品信息包括:商品ID,商品名称,价格,图片地址.
需要设置好数据类型,那么商品ID是long
需要设置是否分词,那么商品ID 不需要分词
需要设置是否要索引,那么商品ID 需要建立索引
需要设置如果要分词,采用什么样的分词器
这里我们统一使用Kibana编写DSL的方式来演示。
格式:
PUT /索引库名称
{
"mappings": {
"properties": {
"字段名":{
"type": "text",
"analyzer": "ik_smart"
},
"字段名2":{
"type": "keyword",
"index": "false"
},
"字段名3":{
"properties": {
"子字段": {
"type": "keyword"
}
}
},
// ...略
}
}
}
基本语法:
请求方式:GET
请求路径:/索引库名
请求参数:无
格式:
GET /索引库名
倒排索引结构虽然不复杂,但是一旦数据结构改变(比如改变了分词器),就需要重新创建倒排索引,这简直是灾难。因此索引库一旦创建,无法修改mapping。
虽然无法修改mapping中已有的字段,但是却允许添加新的字段到mapping中,因为不会对倒排索引产生影响。
语法说明:
PUT /索引库名/_mapping
{
"properties": {
"新字段名":{
"type": "integer"
}
}
}
语法:
请求方式:DELETE
请求路径:/索引库名
请求参数:无
格式:
DELETE /索引库名
在kibana中测试
索引库操作有哪些?
语法:
POST /索引库名/_doc/文档id
{
"字段1": "值1",
"字段2": "值2",
"字段3": {
"子属性1": "值3",
"子属性2": "值4"
},
// ...
}
注意,文档都会有一个唯一标识,我们把它叫做_id (文档ID) 类似于数据库的一行都会有一个主键来作为唯一标识一样。
根据rest风格,新增是post,查询应该是get,不过查询一般都需要条件,这里我们把文档id带上。
语法:
GET /{索引库名称}/_doc/{id}
删除使用DELETE请求,同样,需要根据id进行删除:
语法:
DELETE /{索引库名}/_doc/id值
修改有两种方式:
全量修改是覆盖原来的文档,其本质是:
注意:如果根据id删除时,id不存在,第二步的新增也会执行,也就从修改变成了新增操作了。
语法:
PUT /{索引库名}/_doc/文档id
{
"字段1": "值1",
"字段2": "值2",
// ... 略
}
增量修改是只修改指定id匹配的文档中的部分字段。
语法:
POST /{索引库名}/_update/文档id
{
"doc": {
"字段名": "新的值",
}
}
文档操作有哪些?
刚才使用的是Kibana这种可视化界面来实现,在实际开放过程中,将来需要用到java代码来实现操作。就像我们学习SQL ,可以在navicat上执行,但是JAVA代码实现操作数据库,不会直接使用,而是需要用到JDBC一样。
ES官方提供了各种不同语言的客户端,用来操作ES。这些客户端的本质就是组装DSL语句,通过http请求发送给ES。官方文档地址:https://www.elastic.co/guide/en/elasticsearch/client/index.html
其中的Java Rest Client又包括两种:
整体步骤说明:
1.创建数据库以及表结构 模拟数据
2.通过springboot建立工程(导入依赖,配置yaml 创建启动类)
3.针对ES的映射进行分析(到底需要搜索哪些,在ES中应该使用什么数据类型,是否分词,是否索引,如果要分词分词器是什么)
4.创建索引库
4.1 配置链接到es中
4.2 使用restclient的API实现操作
首先导入数据库数据:
创建索引库,最关键的是mapping映射,而mapping映射要考虑的信息包括:
其中:
在elasticsearch提供的API中,与elasticsearch一切交互都封装在一个名为RestHighLevelClient的类中,必须先完成这个对象的初始化,建立与elasticsearch的连接。 可以直接参考工程即可。
分为三步:
1)引入es的RestHighLevelClient依赖:
2)因为SpringBoot默认的ES版本是7.6.2,所以我们可以覆盖默认的ES版本,当然也可以不用管,如果要改如下:
3)初始化RestHighLevelClient:
这里为了单元测试方便,我们创建一个测试类HotelIndexTest,然后将初始化的代码编写在@BeforeEach方法中:
import java.io.IOException;
public class HotelIndexTest {
private RestHighLevelClient client;
@BeforeEach
void setUp() {
this.client = new RestHighLevelClient(RestClient.builder(
HttpHost.create("http://localhost:9200")
));
}
@AfterEach
void tearDown() throws IOException {
this.client.close();
}
}
代码分为三步:
删除索引库的DSL语句非常简单:
DELETE /hotel
在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现删除索引:
判断索引库是否存在,本质就是查询,对应的DSL是:
HEAD hotel
https://www.elastic.co/guide/en/elasticsearch/reference/7.12/indices-exists.html
JavaRestClient操作elasticsearch的流程基本类似。核心是client.indices()方法来获取索引库的操作对象。
索引库操作的基本步骤:
为了与索引库操作分离,我们再次参加一个测试类,做两件事情:
我们要将数据库的酒店数据查询出来,写入elasticsearch中。
数据库查询后的结果是一个Hotel类型的对象。结构如下:
数据库表与我们的索引库结构存在差异:longitude和latitude需要合并为location,按照ES的要求进行设置
因此,我们需要定义一个新的类型,与索引库结构吻合,并通过构造函数进行设置。
新增文档的DSL语句如下:
POST /{索引库名}/_doc/1
{
"name": "Jack",
"age": 21
}
可以看到与创建索引库类似,同样是三步走:
变化的地方在于,这里直接使用client.xxx()的API,不再需要client.indices()了。
我们导入酒店数据,基本流程一致,但是需要考虑几点变化:
因此,代码整体步骤如下:
在hotel-demo的HotelDocumentTest测试类中,编写单元测试:
查询的DSL语句如下:
GET /hotel/_doc/{id}
非常简单,因此代码大概分两步:
不过查询的目的是得到结果,解析为HotelDoc,因此难点是结果的解析。
可以看到,结果是一个JSON,其中文档放在一个_source
属性中,因此解析就是拿到_source
,反序列化为Java对象即可。
与之前类似,也是三步走:
删除的DSL为是这样的:
DELETE /hotel/_doc/{id}
与查询相比,仅仅是请求方式从DELETE变成GET,可以想象Java代码应该依然是三步走:
修改我们讲过两种方式:
在RestClient的API中,全量修改与新增的API完全一致,判断依据是ID:
这里不再赘述,我们主要关注增量修改。
代码示例如图:
与之前类似,也是三步走:
案例需求:利用BulkRequest批量将数据库数据导入到索引库中。
步骤如下:
利用mybatis-plus查询酒店数据
将查询到的酒店数据(Hotel)转换为文档类型数据(HotelDoc)
利用JavaRestClient中的BulkRequest批处理,实现批量新增文档
注意:批量操作一次的数据大小为15MB比较合适,太大了不行。
批量处理BulkRequest,其本质就是将多个普通的CRUD请求组合在一起发送。
其中提供了一个add方法,用来添加其他请求
可以看到,能添加的请求包括:
因此Bulk中添加了多个IndexRequest,就是批量新增功能了。
步骤:
我们在导入酒店数据时,将上述代码改造成for循环处理即可。
文档操作的基本步骤: