• ElasticSearch(一)


    分布式搜索引擎01

    1.初识elasticsearch

    1.1.了解ES

    想象下 假设 JD上有上千万商品,现在要求你 说出 包含 手机 的商品有哪些(并说出商品ID,商品图片地址,商品价格,商品的名称)? 也就是说实现JD的搜索的功能你怎么办?

    SSM的缺点:
    	+ 搜索精度不高
    	+ 搜索的速度太慢,主要是正向搜索的方式
    可以使用elasticsearch解决上面的问题:
    	+分词器 精度提高
    	+倒排索引 方式极大提高搜索速度	
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    1.1.1.elasticsearch的作用

    elasticsearch是一款非常强大的开源搜索引擎,具备非常多强大功能,可以帮助我们从海量数据中快速找到需要的内容。

    例如:

    • 在GitHub搜索代码

    • 在电商网站搜索商品

    • 在百度搜索答案

    • 在打车软件搜索附近的车

    1.1.2.ELK技术栈

    elasticsearch结合kibana、Logstash、Beats,也就是elastic stack(ELK)。被广泛应用在日志数据分析、实时监控等领域:

    而elasticsearch是elastic stack的核心,负责存储、搜索、分析数据。

    1.1.3.elasticsearch和lucene

    elasticsearch底层是基于lucene来实现的。

    Lucene是一个Java语言的搜索引擎类库,是Apache公司的顶级项目,由DougCutting于1999年研发。官网地址:https://lucene.apache.org/ 。

    elasticsearch的发展历史:

    • 2004年Shay Banon基于Lucene开发了Compass
    • 2010年Shay Banon 重写了Compass,取名为Elasticsearch。

    1.1.4.为什么不是其他搜索技术?

    虽然在早期,Apache Solr是最主要的搜索引擎技术,但随着发展elasticsearch已经渐渐超越了Solr,独占鳌头:

    1.1.5.总结

    什么是elasticsearch?

    • 一个开源的分布式搜索引擎,可以用来实现搜索、日志统计、分析、系统监控等功能

    什么是elastic stack(ELK)?

    • 是以elasticsearch为核心的技术栈,包括beats、Logstash、kibana、elasticsearch

    什么是Lucene?

    • 是Apache的开源搜索引擎类库,提供了搜索引擎的核心API

    1.2.倒排索引(原理)

    1.2.1.正向索引

    那么什么是正向索引呢?例如给下表(tb_goods)中的id创建索引:

    如果是根据id查询,那么直接走索引,查询速度非常快。

    但如果是基于title做模糊查询,只能是逐行扫描数据,流程如下:

    1)用户搜索数据,条件是title符合"%手机%"

    2)逐行获取数据,比如id为1的数据

    3)判断数据中的title是否符合用户搜索条件

    4)如果符合则放入结果集,不符合则丢弃。回到步骤1

    逐行扫描,也就是全表扫描,随着数据量增加,其查询效率也会越来越低。当数据量达到数百万时,就是一场灾难。

    1.2.2.倒排索引

    倒排索引中有两个非常重要的概念:

    • 文档(Document):用来搜索的数据,其中的每一条数据就是一个文档。例如一个网页、一个商品信息
    • 词条(Term):对文档数据或用户搜索数据,利用某种算法分词,得到的具备含义的词语就是词条。例如:我是中国人,就可以分为:我、是、中国人、中国、国人这样的几个词条

    创建倒排索引是对正向索引的一种特殊处理,流程如下:

    • 将每一个文档的数据利用算法分词,得到一个个词条
    • 创建表,每行数据包括词条、词条所在文档id、位置等信息
    • 因为词条唯一性,可以给词条创建索引,例如hash表结构索引

    倒排索引的搜索流程如下(以搜索"华为手机"为例):

    1)用户输入条件"华为手机"进行搜索。

    2)对用户输入内容分词,得到词条:华为手机

    3)拿着词条在倒排索引中查找,可以得到包含词条的文档id:1、2、3。默认采用的是并集

    4)拿着文档id到正向索引中查找具体文档。

    虽然要先查询倒排索引,再查询倒排索引,但是无论是词条、还是文档id都建立了索引,查询速度非常快!无需全表扫描。

    1.2.3.正向和倒排

    那么为什么一个叫做正向索引,一个叫做倒排索引呢?

    • 正向索引是最传统的,根据id索引的方式。但根据词条查询时,必须先逐条获取每个文档,然后判断文档中是否包含所需要的词条,是根据文档找词条的过程

    • 倒排索引则相反,是先找到用户要搜索的词条,根据词条得到保护词条的文档的id,然后根据id获取文档。是根据词条找文档的过程

    ()类比理解如下:

    1.3.es的一些概念

    elasticsearch中有很多独有的概念,与mysql中略有差别,但也有相似之处。比如:

    索引(索引库)

    文档

    字段

    映射

    类型(这个已经去掉了,默认采用_doc来使用)

    我们经常会用 MySQL 的知识来理解 es 的一些概念,比如将 es 的 index 类比成 database,将 type 类比成 table,但这个比喻实际上是不准确的。在 MySQL 中,table 之间是相互独立的,每个表有自己的 schema,每个表都可以有相同的列名,同时支持不同的类型,比如表 A 的 age 列是 tinyint,而表 B 的 age 列是 varchar(10),但在 es 中,相同名字的字段的 mapping 定义必须是一致的,因为在底层 Lucene 只会存一份。
    
    • 1

    官方文档说明:

    https://www.elastic.co/guide/en/elasticsearch/reference/current/removal-of-types.html
    
    • 1

    1.3.1.文档和字段

    elasticsearch是面向文档(Document)就是说ES存储的都是JSON数据存储的,可以是数据库中的一条商品数据,一个订单信息。文档数据会被序列化为json格式后存储在elasticsearch中

    而Json文档中往往包含很多的字段(Field),类似于数据库中的列。

    1.3.2.索引和映射

    索引(Index),就是相同类型的文档的集合。索引类似数据库中的表,都是为了对数据分类。

    例如:

    • 所有用户文档,就可以组织在一起,称为用户的索引;
    • 所有商品的文档,可以组织在一起,称为商品的索引;
    • 所有订单的文档,可以组织在一起,称为订单的索引;

    因此,我们可以把索引当做是数据库中的表。

    数据库的表会有约束信息,用来定义表的结构、字段的名称、类型等信息。因此,索引库中就有**映射(mapping)**这样的概念,是索引中文档的字段约束信息,类似表的结构约束。

    1.3.3.elasticsearch核心概念对比理解

    我们统一的把mysql与elasticsearch的概念做一下对比:

    MySQLElasticsearch说明
    TableIndex索引(index),就是文档的集合,类似数据库的表(table)
    RowDocument文档(Document),就是一条条的数据,类似数据库中的行(Row),文档都是JSON格式
    ColumnField字段(Field),就是JSON文档中的字段,类似数据库中的列(Column)
    Schema(DDL)MappingMapping(映射)是索引中文档的约束,例如字段类型约束。类似数据库的表结构(Schema)
    SQLDSLDSL是elasticsearch提供的JSON风格的请求语句,用来操作elasticsearch,实现CRUD

    DSL 是 Domain Specific Language 的缩写,中文翻译为领域特定语言

    是不是说,我们学习了elasticsearch就不再需要mysql了呢?

    并不是如此,两者各自有自己的擅长:

    • Mysql:擅长事务类型操作,可以确保数据的安全和一致性

    • Elasticsearch:擅长海量数据的搜索、分析、计算

    因此在企业中,往往是两者结合使用:

    • 对安全性要求较高的写操作,使用mysql实现
    • 对查询性能要求较高的搜索需求,使用elasticsearch实现
    • 两者再基于某种方式,实现数据的同步,保证一致性

    1.4.安装es、kibana

    1.4.1.安装

    1.4.2.分词器

    1.4.3.总结

    分词器的作用是什么?

    • 创建倒排索引时对文档分词
    • 用户搜索时,对输入的内容分词

    IK分词器有几种模式?

    • ik_smart:智能切分,粗粒度
    • ik_max_word:最细切分,细粒度,尽可能的分出更多的词,比如 程序员,会分出 程序、程序员、员

    IK分词器如何拓展词条?如何停用词条?

    • 利用config目录的IkAnalyzer.cfg.xml文件添加拓展词典和停用词典
    • 在词典中添加拓展词条或者停用词条,多个之间用分号间隔

    2.索引库操作

    索引库就类似数据库表,mapping映射就类似表的结构。我们要向es中存储数据,必须先创建“库”和“表”。就需要编写DDL语句实现创建库和表。之前我们对比理解过 mapping等同于数据库中DDL。

    2.1.mapping映射属性

    mapping是对索引库中文档的约束,具体的映射针对的是字段。常见的mapping属性包括:

    属性名描述
    type字符串:text(可分词的文本)、keyword(精确值,例如:品牌、国家、ip地址) long、integer、short、byte、double、float、 boolean 、date 、object
    index是否创建索引,默认为true
    analyzer使用哪种分词器(前提是:要分词 才需要指定分词器)
    properties该字段的子字段
    https://www.elastic.co/guide/en/elasticsearch/reference/7.12/mapping-types.html
    
    • 1

    举例拿常见的属性理解如下:

    具体的映射 注意 举例子针对  Field(数据库中的列)来说   包括常见的属性
    
    	+ 是否分词     分词的目的是为了要去建立倒排索引
    	+ 分词器是什么  根据需要确定
    	+ 数据类型什么  根据需求来确定
    	+ 是否要索引    要索引的目的是为了快速的搜索
    	
    如下商品信息包括:商品ID,商品名称,价格,图片地址. 
    
    需要设置好数据类型,那么商品ID是long	
    需要设置是否分词,那么商品ID 不需要分词
    需要设置是否要索引,那么商品ID 需要建立索引
    需要设置如果要分词,采用什么样的分词器
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13

    2.2.索引库的CRUD

    这里我们统一使用Kibana编写DSL的方式来演示。

    2.2.1.创建索引库和映射

    基本语法:
    • 请求方式:PUT
    • 请求路径:/索引库名,可以自定义
    • 请求参数:mapping映射

    格式:

    PUT /索引库名称
    {
      "mappings": {
        "properties": {
          "字段名":{
            "type": "text",
            "analyzer": "ik_smart"
          },
          "字段名2":{
            "type": "keyword",
            "index": "false"
          },
          "字段名3":{
            "properties": {
              "子字段": {
                "type": "keyword"
              }
            }
          },
          // ...略
        }
      }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23

    2.2.2.查询索引库

    基本语法

    • 请求方式:GET

    • 请求路径:/索引库名

    • 请求参数:无

    格式

    GET /索引库名
    
    • 1

    2.2.3.修改索引库

    倒排索引结构虽然不复杂,但是一旦数据结构改变(比如改变了分词器),就需要重新创建倒排索引,这简直是灾难。因此索引库一旦创建,无法修改mapping

    虽然无法修改mapping中已有的字段,但是却允许添加新的字段到mapping中,因为不会对倒排索引产生影响。

    语法说明

    PUT /索引库名/_mapping
    {
      "properties": {
        "新字段名":{
          "type": "integer"
        }
      }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    2.2.4.删除索引库

    语法:

    • 请求方式:DELETE

    • 请求路径:/索引库名

    • 请求参数:无

    格式:

    DELETE /索引库名
    
    • 1

    在kibana中测试

    2.2.5.总结

    索引库操作有哪些?

    • 创建索引库:PUT /索引库名
    • 查询索引库:GET /索引库名
    • 删除索引库:DELETE /索引库名
    • 添加字段:PUT /索引库名/_mapping

    3.文档操作

    3.1.新增文档

    语法:

    POST /索引库名/_doc/文档id
    {
        "字段1": "值1",
        "字段2": "值2",
        "字段3": {
            "子属性1": "值3",
            "子属性2": "值4"
        },
        // ...
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10

    注意,文档都会有一个唯一标识,我们把它叫做_id (文档ID) 类似于数据库的一行都会有一个主键来作为唯一标识一样。

    3.2.根据ID查询文档

    根据rest风格,新增是post,查询应该是get,不过查询一般都需要条件,这里我们把文档id带上。

    语法:

    GET /{索引库名称}/_doc/{id}
    
    • 1

    3.3.根据ID删除文档

    删除使用DELETE请求,同样,需要根据id进行删除:

    语法:

    DELETE /{索引库名}/_doc/id值
    
    • 1

    3.4.根据ID修改文档

    修改有两种方式:

    • 修改全部:直接覆盖原来的文档,实际上当有存在的ID的时候,修改便是(先删除再添加,版本号进行叠加)
    • 修改部分:修改文档中的部分字段

    3.4.1.修改全部

    全量修改是覆盖原来的文档,其本质是:

    • 根据指定的id删除文档
    • 新增一个相同id的文档

    注意:如果根据id删除时,id不存在,第二步的新增也会执行,也就从修改变成了新增操作了。

    语法:

    PUT /{索引库名}/_doc/文档id
    {
        "字段1": "值1",
        "字段2": "值2",
        // ... 略
    }
    
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7

    3.4.2.修改部分

    增量修改是只修改指定id匹配的文档中的部分字段。

    语法:

    POST /{索引库名}/_update/文档id
    {
        "doc": {
             "字段名": "新的值",
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6

    3.5.总结

    文档操作有哪些?

    • 创建文档:POST /{索引库名}/_doc/文档id { json文档 }
    • 查询文档:GET /{索引库名}/_doc/文档id
    • 删除文档:DELETE /{索引库名}/_doc/文档id
    • 修改文档:
      • 修改全部:PUT /{索引库名}/_doc/文档id { json文档 } ,不管是多少数据,都会将之前的数据删除,并再次添加
      • 修改部分:POST /{索引库名}/_update/文档id { “doc”: {字段}}

    4.RestClient操作索引

    ​ 刚才使用的是Kibana这种可视化界面来实现,在实际开放过程中,将来需要用到java代码来实现操作。就像我们学习SQL ,可以在navicat上执行,但是JAVA代码实现操作数据库,不会直接使用,而是需要用到JDBC一样。

    ​ ES官方提供了各种不同语言的客户端,用来操作ES。这些客户端的本质就是组装DSL语句,通过http请求发送给ES。官方文档地址:https://www.elastic.co/guide/en/elasticsearch/client/index.html

    其中的Java Rest Client又包括两种:

    • Java Low Level Rest Client
    • Java High Level Rest Client

    4.0.导入工程

    整体步骤说明:

    1.创建数据库以及表结构 模拟数据
    
    2.通过springboot建立工程(导入依赖,配置yaml 创建启动类)
    
    3.针对ES的映射进行分析(到底需要搜索哪些,在ES中应该使用什么数据类型,是否分词,是否索引,如果要分词分词器是什么)
    
    4.创建索引库
    	4.1 配置链接到es中
    	4.2 使用restclient的API实现操作
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    4.0.1.导入数据

    首先导入数据库数据:

    4.0.2.导入项目

    4.0.3.mapping映射分析

    创建索引库,最关键的是mapping映射,而mapping映射要考虑的信息包括:

    • 字段名
    • 字段数据类型
    • 是否参与搜索
    • 是否需要分词
    • 如果分词,分词器是什么?

    其中:

    • 字段名、字段数据类型,可以参考数据表结构的名称和类型
    • 是否参与搜索要分析业务来判断,例如图片地址,就无需参与搜索
    • 是否分词呢要看内容,内容如果是一个整体就无需分词,反之则要分词
    • 分词器,我们可以统一使用ik_max_word

    4.0.4.初始化RestClient

    在elasticsearch提供的API中,与elasticsearch一切交互都封装在一个名为RestHighLevelClient的类中,必须先完成这个对象的初始化,建立与elasticsearch的连接。 可以直接参考工程即可。

    分为三步:

    1)引入es的RestHighLevelClient依赖:

    2)因为SpringBoot默认的ES版本是7.6.2,所以我们可以覆盖默认的ES版本,当然也可以不用管,如果要改如下:

    3)初始化RestHighLevelClient:

    这里为了单元测试方便,我们创建一个测试类HotelIndexTest,然后将初始化的代码编写在@BeforeEach方法中:

    import java.io.IOException;
    
    public class HotelIndexTest {
        private RestHighLevelClient client;
    
        @BeforeEach
        void setUp() {
            this.client = new RestHighLevelClient(RestClient.builder(
                    HttpHost.create("http://localhost:9200")
            ));
        }
    
        @AfterEach
        void tearDown() throws IOException {
            this.client.close();
        }
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17

    4.1.创建索引库

    4.1.1.代码解读

    代码分为三步:

    • 1)创建Request对象。因为是创建索引库的操作,因此Request是CreateIndexRequest。
    • 2)添加请求参数,其实就是DSL的JSON参数部分。因为json字符串很长,这里是定义了静态字符串常量MAPPING_TEMPLATE,让代码看起来更加优雅。
    • 3)发送请求,client.indices()方法的返回值是IndicesClient类型,封装了所有与索引库操作有关的方法。

    4.2.删除索引库

    删除索引库的DSL语句非常简单:

    DELETE /hotel
    
    • 1

    在hotel-demo中的HotelIndexTest测试类中,编写单元测试,实现删除索引:

    4.3.判断索引库是否存在

    判断索引库是否存在,本质就是查询,对应的DSL是:

    HEAD hotel
    
    • 1
    https://www.elastic.co/guide/en/elasticsearch/reference/7.12/indices-exists.html
    
    • 1

    4.4.总结

    JavaRestClient操作elasticsearch的流程基本类似。核心是client.indices()方法来获取索引库的操作对象。

    索引库操作的基本步骤:

    • 初始化RestHighLevelClient
    • 创建XxxIndexRequest。XXX是Create、Get、Delete
    • 准备DSL( Create时需要,其它是无参)
    • 发送请求。调用RestHighLevelClient#indices().xxx()方法,xxx是create、exists、delete

    5.RestClient操作文档

    为了与索引库操作分离,我们再次参加一个测试类,做两件事情:

    • 初始化RestHighLevelClient
    • 我们的酒店数据在数据库,需要利用IHotelService去查询,所以注入这个接口

    5.1.新增文档

    我们要将数据库的酒店数据查询出来,写入elasticsearch中。

    5.1.1.索引库实体类

    数据库查询后的结果是一个Hotel类型的对象。结构如下:

    数据库表与我们的索引库结构存在差异:longitude和latitude需要合并为location,按照ES的要求进行设置

    因此,我们需要定义一个新的类型,与索引库结构吻合,并通过构造函数进行设置。

    5.1.2.语法说明

    新增文档的DSL语句如下:

    POST /{索引库名}/_doc/1
    {
        "name": "Jack",
        "age": 21
    }
    
    • 1
    • 2
    • 3
    • 4
    • 5

    可以看到与创建索引库类似,同样是三步走:

    • 1)创建Request对象
    • 2)准备请求参数,也就是DSL中的JSON文档
    • 3)发送请求

    变化的地方在于,这里直接使用client.xxx()的API,不再需要client.indices()了。

    5.1.3.完整代码

    我们导入酒店数据,基本流程一致,但是需要考虑几点变化:

    • 酒店数据来自于数据库,我们需要先查询出来,得到hotel对象
    • hotel对象需要转为HotelDoc对象
    • HotelDoc需要序列化为json格式

    因此,代码整体步骤如下:

    • 1)根据id查询酒店数据Hotel
    • 2)将Hotel封装为HotelDoc
    • 3)将HotelDoc序列化为JSON
    • 4)创建IndexRequest,指定索引库名和id
    • 5)准备请求参数,也就是JSON文档
    • 6)发送请求

    在hotel-demo的HotelDocumentTest测试类中,编写单元测试:

    5.2.查询文档

    5.2.1.语法说明

    查询的DSL语句如下:

    GET /hotel/_doc/{id}
    
    • 1

    非常简单,因此代码大概分两步:

    • 准备Request对象
    • 发送请求

    不过查询的目的是得到结果,解析为HotelDoc,因此难点是结果的解析。

    可以看到,结果是一个JSON,其中文档放在一个_source属性中,因此解析就是拿到_source,反序列化为Java对象即可。

    与之前类似,也是三步走:

    • 1)准备Request对象。这次是查询,所以是GetRequest
    • 2)发送请求,得到结果。因为是查询,这里调用client.get()方法
    • 3)解析结果,就是对JSON做反序列化

    5.3.删除文档

    删除的DSL为是这样的:

    DELETE /hotel/_doc/{id}
    
    • 1

    与查询相比,仅仅是请求方式从DELETE变成GET,可以想象Java代码应该依然是三步走:

    • 1)准备Request对象,因为是删除,这次是DeleteRequest对象。要指定索引库名和id
    • 2)准备参数,无参
    • 3)发送请求。因为是删除,所以是client.delete()方法

    5.4.修改文档

    5.4.1.语法说明

    修改我们讲过两种方式:

    • 全量修改:本质是先根据id删除,再新增
    • 增量修改:修改文档中的指定字段值

    在RestClient的API中,全量修改与新增的API完全一致,判断依据是ID:

    • 如果新增时,ID已经存在,则修改
    • 如果新增时,ID不存在,则新增

    这里不再赘述,我们主要关注增量修改。

    代码示例如图:

    与之前类似,也是三步走:

    • 1)准备Request对象。这次是修改,所以是UpdateRequest
    • 2)准备参数。也就是JSON文档,里面包含要修改的字段
    • 3)更新文档。这里调用client.update()方法

    5.5.批量导入文档

    案例需求:利用BulkRequest批量将数据库数据导入到索引库中。

    步骤如下:

    • 利用mybatis-plus查询酒店数据

    • 将查询到的酒店数据(Hotel)转换为文档类型数据(HotelDoc)

    • 利用JavaRestClient中的BulkRequest批处理,实现批量新增文档

    注意:批量操作一次的数据大小为15MB比较合适,太大了不行。

    5.5.1.JAVA代码说明

    批量处理BulkRequest,其本质就是将多个普通的CRUD请求组合在一起发送。

    其中提供了一个add方法,用来添加其他请求

    可以看到,能添加的请求包括:

    • IndexRequest,也就是新增
    • UpdateRequest,也就是修改
    • DeleteRequest,也就是删除

    因此Bulk中添加了多个IndexRequest,就是批量新增功能了。

    步骤:

    • 1)创建Request对象。这里是BulkRequest
    • 2)准备参数。批处理的参数,就是其它Request对象,这里就是多个IndexRequest
    • 3)发起请求。这里是批处理,调用的方法为client.bulk()方法

    我们在导入酒店数据时,将上述代码改造成for循环处理即可。

    5.5.小结

    文档操作的基本步骤:

    • 初始化RestHighLevelClient
    • 创建XxxRequest。XXX是Index、Get、Update、Delete、Bulk
    • 准备参数(Index、Update、Bulk时需要)
    • 发送请求。调用RestHighLevelClient#.xxx()方法,xxx是index、get、update、delete、bulk
    • 解析结果(Get时需要)
  • 相关阅读:
    关于JavaScript中reduce的使用场景
    设置私有 Git 服务器笔记
    Spring Boot 学习-基础
    jsp学习笔记
    远程debug调试
    Go语言的诞生背景
    【合辑】点云基础知识及点云催化剂软件功能介绍
    数字化转型背景下,企业如何做好知识管理?
    快速排序算法
    [PAT练级笔记] 08 Basic Level 1010
  • 原文地址:https://blog.csdn.net/weixin_66490956/article/details/127887781