• 考研高数背诵类知识点-张宇(不定期更新)


    考研高数背诵知识点

    1. 诱导公式

    sin ⁡ ( π 2 ± α ) = cos ⁡ α sin ⁡ ( π ± α ) = ∓ sin ⁡ α cos ⁡ ( π 2 ± α ) = ∓ sin ⁡ α sin ⁡ ( π ± α ) = − cos ⁡ α \sin(\frac{\pi}{2}\pm\alpha) = \cos\alpha\\ \sin(\pi\pm\alpha) = \mp\sin\alpha\\ \cos(\frac{\pi}{2}\pm\alpha) = \mp\sin\alpha\\ \sin(\pi\pm\alpha) = -\cos\alpha\\ sin(2π±α)=cosαsin(π±α)=sinαcos(2π±α)=sinαsin(π±α)=cosα

    1. 三倍角公式

    sin ⁡ 3 α = − 4 sin ⁡ 3 α + 3 sin ⁡ α cos ⁡ 3 α = 4 cos ⁡ 3 α − 3 cos ⁡ α \sin 3\alpha = -4\sin^3\alpha+3\sin\alpha\\ \cos 3\alpha=4\cos^3\alpha-3\cos\alpha sin3α=4sin3α+3sinαcos3α=4cos3α3cosα

    1. 半角公式

    sin ⁡ 2 α 2 = 1 2 ( 1 − cos ⁡ α ) cos ⁡ 2 α 2 = 1 2 ( 1 + cos ⁡ α ) tan ⁡ α 2 = 1 − cos ⁡ α sin ⁡ α = sin ⁡ α 1 + cos ⁡ α = ± 1 − cos ⁡ α 1 + cos ⁡ α cot ⁡ α 2 = sin ⁡ α 1 − cos ⁡ α = 1 + cos ⁡ α sin ⁡ α = ± 1 + cos ⁡ α 1 − cos ⁡ α \sin^2\frac{\alpha}{2} = \frac{1}{2}(1-\cos\alpha)\\ \cos^2\frac{\alpha}{2} = \frac{1}{2}(1+\cos\alpha)\\ \tan\frac{\alpha}{2} = \frac{1-\cos\alpha}{\sin\alpha} = \frac{\sin\alpha}{1+\cos\alpha} = \pm\sqrt{\frac{1-\cos\alpha}{1+\cos\alpha}}\\ \cot\frac{\alpha}{2} = \frac{\sin\alpha}{1-\cos\alpha} = \frac{1+\cos\alpha}{\sin\alpha} = \pm\sqrt{\frac{1+\cos\alpha}{1-\cos\alpha}}\\ sin22α=21(1cosα)cos22α=21(1+cosα)tan2α=sinα1cosα=1+cosαsinα=±1+cosα1cosα cot2α=1cosαsinα=sinα1+cosα=±1cosα1+cosα

    1. cot ⁡ \cot cot和差公式

    cot ⁡ ( α + β ) = cot ⁡ α cot ⁡ β − 1 cot ⁡ β + cot ⁡ α \cot(\alpha+\beta) = \frac{\cot\alpha\cot\beta-1}{\cot\beta+\cot\alpha} cot(α+β)=cotβ+cotαcotαcotβ1

    cot ⁡ ( α − β ) = cot ⁡ α cot ⁡ β + 1 cot ⁡ β − cot ⁡ α \cot(\alpha-\beta) = \frac{\cot\alpha\cot\beta+1}{\cot\beta-\cot\alpha} cot(αβ)=cotβcotαcotαcotβ+1

    1. 积化和差公式[^考前背,基本不考]

    sin ⁡ α cos ⁡ β = sin ⁡ ( α + β ) + sin ⁡ ( α − β ) 2 cos ⁡ α sin ⁡ β = sin ⁡ ( α + β ) − sin ⁡ ( α − β ) 2 cos ⁡ α cos ⁡ β = cos ⁡ ( α + β ) + c o s ( α − β ) 2 sin ⁡ α sin ⁡ β = − cos ⁡ ( α + β ) − cos ⁡ ( α − β ) 2 \sin\alpha\cos\beta=\frac{\sin(\alpha+\beta)+\sin(\alpha-\beta)}{2}\\ \cos\alpha\sin\beta=\frac{\sin(\alpha+\beta)-\sin(\alpha-\beta)}{2}\\ \cos\alpha\cos\beta=\frac{\cos(\alpha+\beta)+cos(\alpha-\beta)}{2}\\ \sin\alpha\sin\beta=-\frac{\cos(\alpha+\beta)-\cos(\alpha-\beta)}{2} sinαcosβ=2sin(α+β)+sin(αβ)cosαsinβ=2sin(α+β)sin(αβ)cosαcosβ=2cos(α+β)+cos(αβ)sinαsinβ=2cos(α+β)cos(αβ)

    1. 和差化积公式[^考前背,基本不考]

    sin ⁡ α + sin ⁡ β = 2 sin ⁡ α + β 2 cos ⁡ α − β 2 sin ⁡ α − sin ⁡ β = 2 cos ⁡ α + β 2 sin ⁡ α − β 2 cos ⁡ α + cos ⁡ β = 2 cos ⁡ α + β 2 cos ⁡ α − β 2 cos ⁡ α − cos ⁡ β = − 2 sin ⁡ α + β 2 sin ⁡ α − β 2 \sin\alpha+\sin\beta = 2\sin\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}\\ \sin\alpha-\sin\beta = 2\cos\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2}\\ \cos\alpha+\cos\beta = 2\cos\frac{\alpha+\beta}{2}\cos\frac{\alpha-\beta}{2}\\ \cos\alpha-\cos\beta = -2\sin\frac{\alpha+\beta}{2}\sin\frac{\alpha-\beta}{2} sinα+sinβ=2sin2α+βcos2αβsinαsinβ=2cos2α+βsin2αβcosα+cosβ=2cos2α+βcos2αβcosαcosβ=2sin2α+βsin2αβ

    1. 万能公式

    ​ 若 u = tan ⁡ x 2 ( − π < x < π ) u=\tan\frac{x}{2}(-\piu=tan2x(π<x<π),则 sin ⁡ x = 2 u 1 + u 2 \sin x = \frac{2u}{1+u^2} sinx=1+u22u, cos ⁡ x = 1 − u 2 1 + u 2 \cos x = \frac{1-u^2}{1+u^2} cosx=1+u21u2

    1. 常见的等差数列前n项和

    ∑ k = 1 n k 2 = 1 2 + 2 2 + 3 2 + ⋯ + n 2 = n ( n + 1 ) ( 2 n + 1 ) 6 \sum_{k=1}^nk^2 = 1^2+2^2+3^2+\dots+n^2 = \frac{n(n+1)(2n+1)}{6} k=1nk2=12+22+32++n2=6n(n+1)(2n+1)

    1. 根的公式

    x 1 , 2 = − b ± b 2 − 4 a c 2 a x_{1,2} = \frac{-b\pm\sqrt{b^2-4ac}}{2a} x1,2=2ab±b24ac

    1. 根与系数的关系(韦达定理)

    x 1 + x 2 = − b a x 1 x 2 = c a x_1+x_2=-\frac{b}{a}\\ x_1x_2 = \frac{c}{a} x1+x2=abx1x2=ac

    1. 因式分解公式

    ( a + b ) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 ( a − b ) 3 = a 3 − 3 a 2 b + 3 a b 2 − b 3 a 3 − b 3 = ( a − b ) ( a 2 + a b + b 2 ) a 3 + b 3 = ( a + b ) ( a 2 − a b + b 2 ) a n − b n = ( a − b ) ∑ i = 0 n − 1 a n − 1 − i   b i a n + b n = ( a − b ) ∑ i = 0 n − 1 ( − 1 ) i a n − 1 − i   b i ( n 为 正 奇 数 ) (a+b)^3=a^3+3a^2b+3ab^2+b^3\\ (a-b)^3=a^3-3a^2b+3ab^2-b^3\\ a^3-b^3 = (a-b)(a^2+ab+b^2)\\ a^3+b^3 = (a+b)(a^2-ab+b^2)\\ a^n-b^n = (a-b)\sum_{i=0}^{n-1}a^{n-1-i}\ b^i\\ a^n+b^n = (a-b)\sum_{i=0}^{n-1}(-1)^{i}a^{n-1-i}\ b^i(n 为正奇数) (a+b)3=a3+3a2b+3ab2+b3(ab)3=a33a2b+3ab2b3a3b3=(ab)(a2+ab+b2)a3+b3=(a+b)(a2ab+b2)anbn=(ab)i=0n1an1i bian+bn=(ab)i=0n1(1)ian1i bi(n)

    1. 双阶乘

    ( 2 n ) ! ! = 2 ∗ 4 ∗ 6 ∗ 8 ∗ 10 ∗ ⋯ ∗ ( 2 n ) = 2 n ∗ n ! ( 2 n − 1 ) ! ! = 1 ∗ 3 ∗ 5 ∗ 7 ∗ ⋯ ∗ ( 2 n − 1 ) (2n)!! = 2*4*6*8*10*\dots*(2n)=2^n*n!\\ (2n-1)!! = 1 * 3* 5*7*\dots*(2n-1) (2n)!!=246810(2n)=2nn!(2n1)!!=1357(2n1)

    1. 常用不等式
    • ∣ a ± b ∣ ≤ ∣ a ∣ + ∣ b ∣ ∣ ∣ a ∣ − ∣ b ∣ ∣ ≤ ∣ a − b ∣ ∣ a 1 ± a 2 ± ⋯ ± a n ∣ ≤ ∣ a 1 ∣ + ∣ a 2 ∣ + ⋯ + ∣ a n ∣ |a\pm b|\leq|a|+|b|\\ ||a|-|b||\leq|a-b|\\ |a_1\pm a_2\pm \dots\pm a_n|\leq|a_1|+|a_2|+\dots+|a_n|\\ a±ba+bababa1±a2±±ana1+a2++an

    • a b ≤ a + b 2 ≤ a 2 + b 2 2       ( a , b > 0 ) a b c 3 ≤ a + b + c 3 ≤ a 2 + b 2 + c 2 3      ( a , b , c > 0 ) \sqrt{ab}\leq \frac{a+b}{2}\leq\sqrt{\frac{a^2+b^2}{2}}\ \ \ \ \ (a,b>0)\\ \sqrt[3]{abc}\leq\frac{a+b+c}{3}\leq\sqrt{\frac{a^2+b^2+c^2}{3}}\ \ \ \ (a,b,c>0)\\ ab 2a+b2a2+b2      (a,b>0)3abc 3a+b+c3a2+b2+c2     (a,b,c>0)

    • 若 0 < a < x < b , 0 < c < y < d , 则 c b < y x < d a 若00<a<x<b,0<c<y<d,bc<xy<ad

    • 1 x + 1 < ln ⁡ ( 1 + 1 x ) < 1 x       ( x > 0 ) \frac{1}{x+1}<\ln(1+\frac{1}{x})<\frac{1}{x}\ \ \ \ \ (x>0) x+11<ln(1+x1)<x1     (x>0)

  • 相关阅读:
    如何应对继承的双面性
    java计算机毕业设计教育机构管理源码+mysql数据库+系统+lw文档+部署
    Mysql索引学习笔记
    macOS使用官方安装包安装python
    Cyber RT基础入门与实践_Hello Apollo
    工具链赋能百家,地平线开启智能驾驶量产的“马太效应”
    SpringBoot 整合mybatis,mybatis-plus
    vue3+vite自动引入组合Api插件unplugin-auto-import
    【Java面试】如何理解Spring Boot中的Starter?
    FPGA之旅设计99例之第四例-----多byte串口通信
  • 原文地址:https://blog.csdn.net/qq_30347475/article/details/127883595