• 全解消能减震神器之“黏滞阻尼器”(上)


    导读:

    在我国,被动减震装置得到广泛应用,不仅在高层建筑、加上最近还实施颁布了工程抗震管理条例。目前减震构件及结构类型的组合已有诸多形式,今后随着其性能方面、经济方面及设计创意等方面的改进,可以想象会进一步创造出更加丰富多彩的减震结构。

    一、消能减震的理念

    为了更有效地提高结构的抗震性能,在设计中采用“柔性耗能”理念来减小结构振动响应,通过调整结构的质量、刚度和阻尼特性来实现预期抗震水平。

    传统设计以结构构件的塑性损伤为代价,秉持“硬抗”理念,采用优化关键构件的特征几何尺度、放大构件材料强度等措施以提高结构的抗震承载能力。众所周知,地震的发生和作用具有极强的随机性和破坏性,因此,传统设计不仅难于保障建筑结构及生命财产安全,还可能大幅度增加建设成本。

    结构消能减震又称耗能减震,其机理是在特定构件的界面连接处安装耗能器,通过耗能器将地震动输入的机械能转化成能够均匀耗散的热能从而使得结构振动响应降低,或者通过新结构中的原结构和附设装置分别作为主结构和子结构联合承担振动作用,从而获得调谐,并将振动反应控制在预期值以内。

    在采用消能减震方法的情况下,在较低级别地震或风振作用下结构可以获得足够的初始刚度而保持弹性状态;而在较高级别地震或风振作用下,当结构的侧向变形尚未开始变大时,耗能装置就能先于结构进入非弹性状态,从而避免结构的承重构件进入到非弹性状态。

    本期给大家主要带来的是减震设计中的黏滞阻尼器相关的内容。

    二、黏滞阻尼器的初识

    黏滞阻尼器是速度相关型阻尼器,目前在土木工程领域内被普遍采用的流体阻尼器内部构造基本属于射流型,下图为单出杆型阻尼器,其工作方式是通过活塞的往复运动,液体流过活塞头上的小孔从而提供阻尼力。

    除了上述单出杆式黏滞阻尼器,还有黏滞阻尼墙和三向缸筒式黏滞阻尼器。前两种阻尼器已在建筑结构的振动控制中得到广泛应用,而三向缸筒式黏滞阻尼器主要用于管道系统的振动控制。

    对于黏滞阻尼器的研究,近年来主要是对于黏滞阻尼器的空间分布的优化以及提高黏滞阻尼器构件性能的方法研究。

    对于空间分布的优化:主要是为了最大程度的发挥黏滞阻尼器的耗能能力,减小结构在地震作用下的反应,如何选择合理有效的位置布置阻尼器具有重大的意义。通过对某建筑进行非线性时程分析,以最大程度减小层间位移角,甚至融入同时考虑了初始成本与总体预期损失的目标,得到最高的附加阻尼比为目标进行了优化。

    对于提高黏滞阻尼器构件性能方法:阻尼器的能量耗散能力随着阻尼器变形的增大而增大,而阻尼器的变形通常受限于结构的层间位移角,为了使阻尼器有尽可能大的变形,同时不减小结构的承载力,因此可以对黏滞阻尼器内部进行增大阻变形来打破现有层间变形的限制。换言之,利用放大系统将楼层变形放大给予阻尼器,使得阻尼器得到更大的行程(或者速度),提供更高的等效阻尼比给结构,从而更高效的保护结构。

    如杆式黏滞阻尼器的对角支撑、人字支撑和套索支撑是利用结构层间剪切变形来发挥阻尼器的作用,且套索支撑形式可以放大结构层间剪切变形,增强阻尼器的耗能作用;而加强层中竖向布置是利用结构弯曲变形来发挥阻尼器的作用,可以通过伸臂杠杆的放大作用来提高阻尼器的耗能效率。(对于放大系统,更多精彩可以查询各类文献)

    三、黏滞阻尼器的构件设计

    通常在国内,结构工程师对于黏滞阻尼器通常是一种拿来主义的态度(直接确定阻尼系数和阻尼指数,代入模型直接算~),而事实上,黏滞阻尼器的设计是一个十分复杂的过程,大致上可以分为黏滞阻尼器的强度计算、阻尼器的热量计算、流体动力学计算以及对比经验数据这四个主要过程:

    (1)强度设计:阻尼器内部所有部件均应进行强度设计,各部件包括活塞杆、油缸以及护套在设计额定阻尼力基础上同时考虑一定安全储备;通常情况下安全系数应考虑取2~2.5倍,应保证在此安全储备下拉力和压力下各部件不应有任何屈服、变形。

    (2)受热计算分析:按照单位时间内阻尼器的能量耗散进行阻尼器的热量计算,同时考虑动力密封件的设置。(3)流体动力学计算:确保所有参数达到设计曲线要求。

    (4)对比经验数据:设计阻尼器同时参照丰富的数据平台,确保精度。

    事实上对于这四项设计过程,由于黏滞阻尼器所处的环境不同,其单位时间所耗散的热量有很大差别,这也是黏滞阻尼器设计的前提。

    一方面黏滞阻尼器设计是由其强度来控制的,在土木工程领域的抗震阻尼器,在设计荷载的基础上,考虑足够的安全储备后,通过强度确定阻尼器各部分零部件的尺寸。

    另一方面是阻尼器的单位时间需消耗的能量很大,阻尼器需要足够的内部腔体和外部尺寸来实现能量转换,在这类设计中功率是起到决定作用的控制因素。对于抗风荷载、需要考虑连续工作的阻尼器,考虑阻尼器的功率是必不可少的,而黏滞阻尼器内部的流体介质运动是一个复杂的流体动力学问题。

    此外,明确黏滞阻尼器的工作和运行状态是进行一个合理的耗能减震设计过程的基础,这也与设计者的初衷及目的有关。黏滞阻尼器的工作状态主要可分为两种,即日常的运营状态以及遇到突发事件所处的状态。这里涉及到的阻尼器主要工作和运行状态包括黏滞阻尼器内部工作压强、其能量耗散形式、热效应以及服役期限等。每种新参数的阻尼器的生产过程,都是个边生产、边实验的过程,除了控制质量的材料试验、成品的质量检测、部分组件(如活塞、密封件)的检测也都是必不可少的。

    四、黏滞阻尼器的黏滞流体成份

    目前用于黏滞流体消能阻尼器的黏滞流体主要是液压油、有机硅油、硅基胶和特种悬浮液,而有机硅油又是应用最广的。

    有机硅油是有机硅高聚物中的一种,它的分子结构中还有元素硅,并且分子主链是一条由硅原子和氧原子交替组成的骨架。有机硅油具有无毒、无味、无腐蚀性和不易燃烧等优点。有机硅油的种类有很多,其中二甲基硅油最常用作为黏滞流体消能阻尼器的黏滞介质,目前的研究也最为成熟。

    二甲基硅油,或简称为甲基硅油,是一种无色透明的油状液体,密度一般为930~975kg/m2,不溶于水,并且疏水性好,具有比较好的电气绝缘性能,是最基本、最典型的有机硅油,也是产量最大、应用最广的一种品种。

    五、黏滞阻尼器设计中的应用要点

    点击完整阅读全文  

    全解消能减震神器之“黏滞阻尼器”(上)

    相关阅读推荐:

    【JY】结构概念之(消能减震黏滞阻尼器)

    【JY】JYLRB插件:一键生成ABAQUS橡胶支座模型

  • 相关阅读:
    【基础知识】一网络不通问题处理记录
    面试半个月后的一些想法
    Rails 中的布局和渲染
    micronet ICCV2021
    [R]第二节 对象介绍与赋值运算
    java公交线路查询系统计算机毕业设计MyBatis+系统+LW文档+源码+调试部署
    探视分机对接医疗平台
    震颤的分类是什么?
    卷积神经网络提取的图像特征包括哪些
    http头各字段含义
  • 原文地址:https://blog.csdn.net/fangzhenxiu6688/article/details/127826422