当n→∞时,
C
n
i
=
n
!
(
n
−
i
)
!
i
!
=
n
×
(
n
−
1
)
×
.
.
.
×
(
n
−
i
+
1
)
/
i
!
→
n
i
/
i
!
C_n^i=\frac{n!}{(n-i)!i!}=n×(n-1)×...×(n-i+1)/i!→n^i/i!
Cni=(n−i)!i!n!=n×(n−1)×...×(n−i+1)/i!→ni/i!
从《人工智能数学基础8:两个重要极限及夹逼定理: https://blog.csdn.net/LaoYuanPython/article/details/106583840》可知当n→∞时,(1+
1
n
)
n
→
e
\frac{1}{n})^n→e
n1)n→e 而
(
1
−
1
n
)
n
=
(
n
−
1
n
)
n
=
(
n
n
−
1
)
−
n
=
(
1
+
1
n
−
1
)
−
(
n
−
1
)
×
(
1
+
1
n
−
1
)
−
1
→
e
−
1
×
(
1
+
1
n
−
1
)
−
1
→
e
−
1
(1-\frac{1}{n})^n=(\frac{n-1}{n})^n=(\frac{n}{n-1})^{-n}=(1+\frac{1}{n-1})^{-(n-1)}×(1+\frac{1}{n-1})^{-1}→e^{-1}×(1+\frac{1}{n-1})^{-1}→e^{-1}
(1−n1)n=(nn−1)n=(n−1n)−n=(1+n−11)−(n−1)×(1+n−11)−1→e−1×(1+n−11)−1→e−1 设n=mλ,则
(
1
−
λ
n
)
n
=
(
(
1
−
1
m
)
m
)
λ
)
=
e
−
λ
(1-\frac{λ}{n})^n=((1-\frac{1}{m})^m)^λ)=e^{-λ}
(1−nλ)n=((1−m1)m)λ)=e−λ