• 皮带跑偏检测系统


    皮带跑偏识别检测基于YOLO算法图像识别对皮带运行状态进行全天候实时监测。YOLO是一个聪明的卷积神经网络(CNN),用于实时进行目标检测。该算法将单个神经网络应用于完整的图像,然后将图像划分为多个区域,并预测每个区域的边界框和概率。这些边界框是由预测的概率加权的。要理解YOLO,我们首先要分别理解这两个模型。

    YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;Mosaic数据增强:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错

    YOLOv5目标检测算法的整体框图。对于一个目标检测算法而言,我们通常可以将其划分为4个通用的模块,具体包括:输入端、基准网络、Neck网络与Head输出端,对应于上图中的4个红色模块。YOLOv5算法具有4个版本,具体包括:YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x四种,本文重点讲解YOLOv5s,其它的版本都在该版本的基础上对网络进行加深与加宽。

     Adapter接口定义了如下方法:

    public abstract void registerDataSetObserver (DataSetObserver observer) 
    Adapter表示一个数据源,这个数据源是有可能发生变化的,比如增加了数据、删除了数据、修改了数据,当数据发生变化的时候,它要通知相应的AdapterView做出相应的改变。为了实现这个功能,Adapter使用了观察者模式,Adapter本身相当于被观察的对象,AdapterView相当于观察者,通过调用registerDataSetObserver方法,给Adapter注册观察者。

    public abstract void unregisterDataSetObserver (DataSetObserver observer) 
    通过调用unregisterDataSetObserver方法,反注册观察者。

    public abstract int getCount () 返回Adapter中数据的数量。

    public abstract Object getItem (int position) 
    Adapter中的数据类似于数组,里面每一项就是对应一条数据,每条数据都有一个索引位置,即position,根据position可以获取Adapter中对应的数据项。

    public abstract long getItemId (int position) 
    获取指定position数据项的id,通常情况下会将position作为id。在Adapter中,相对来说,position使用比id使用频率更高。

    public abstract boolean hasStableIds () 
    hasStableIds表示当数据源发生了变化的时候,原有数据项的id会不会发生变化,如果返回true表示Id不变,返回false表示可能会变化。Android所提供的Adapter的子类(包括直接子类和间接子类)的hasStableIds方法都返回false。

    public abstract View getView (int position, View convertView, ViewGroup parent) 
    getView是Adapter中一个很重要的方法,该方法会根据数据项的索引为AdapterView创建对应的UI项。

  • 相关阅读:
    java 企业工程管理系统软件源码 自主研发 工程行业适用
    JavaWeb开发了解
    任意微信公众号短链实时获取阅读量、点赞数爬虫方案(不会Hook可用)
    LIF-MDF6000-6KMG80I FPGA现场可编程门阵列 封装BGA
    应用开发平台集成工作流系列之16——办理意见设计与实现
    Spring IoC、容器初始化、对象
    经典/最新计算机视觉论文及代码推荐
    条例11~12(构造/析构/赋值函数)
    SDI-12协议与STM32 进行uart通信
    自定义Docker镜像--Jupyterlab
  • 原文地址:https://blog.csdn.net/KO_159/article/details/127876949