在前面两篇博客中,介绍了两种文本内容相似度比较算法,SimHash和MinHash,通过技术验证的结果来看,符合项目产品方案规划需求,接下来将把这两种算法应用于不同的场景。
而通常,我们的数据中不仅仅只有文本,也会存在图片。此前,存在图片的数据系统不会做任何处理,都只能直接交由人工处理。这样一来,工作量显然很庞大。所以,这次也调研了图片对比的几种算法,从结果来说,还是能够满足实际使用场景的。
下面介绍的三种算法本质思想都是一样的,即先计算图片的Hash,再通过海明距离表示差异,海明距离越小,则说明图片越相似。
public static BufferedImage thumb(BufferedImage source, int width,
int height, boolean b) {
// targetW,targetH分别表示目标长和宽
int type = source.getType();
BufferedImage target = null;
double sx = (double) width / source.getWidth();
double sy = (double) height / source.getHeight();
if (b) {
if (sx > sy) {
sx = sy;
width = (int) (sx * source.getWidth());
} else {
sy = sx;
height = (int) (sy * source.getHeight());
}
}
if (type == BufferedImage.TYPE_CUSTOM) { // handmade
ColorModel cm = source.getColorModel();
WritableRaster raster = cm.createCompatibleWritableRaster(width,
height);
boolean alphaPremultiplied = cm.isAlphaPremultiplied();
target = new BufferedImage(cm, raster, alphaPremultiplied, null);
} else
target = new BufferedImage(width, height, type);
Graphics2D g = target.createGraphics();
// smoother than exlax:
g.setRenderingHint(RenderingHints.KEY_RENDERING,
RenderingHints.VALUE_RENDER_QUALITY);
g.drawRenderedImage(source, AffineTransform.getScaleInstance(sx, sy));
g.dispose();
return target;
}
public static int rgbToGray(int pixels) {
// int _alpha = (pixels >> 24) & 0xFF;
int _red = (pixels >> 16) & 0xFF;
int _green = (pixels >> 8) & 0xFF;
int _blue = (pixels) & 0xFF;
return (int) (0.3 * _red + 0.59 * _green + 0.11 * _blue);
}
public static int average(int[] pixels) {
float m = 0;
for (int i = 0; i < pixels.length; ++i) {
m += pixels[i];
}
m = m / pixels.length;
return (int) m;
}
比较每个像素的灰度,与平均值进行比较。大于或等于平均值记为1;小于平均值记为0。
将上一步的结果组合在一起,就构成了一个64位的整数,即为图片的指纹。
比较hash值,计算海明距离。
/**
* 计算"海明距离"(Hamming distance)。
* 如果不相同的数据位不超过5,就说明两张图片很相似;如果大于10,就说明这是两张不同的图片。
*
* @param sourceHashCode 源hashCode
* @param hashCode 与之比较的hashCode
*/
public static int hammingDistance(String sourceHashCode, String hashCode) {
int difference = 0;
int len = sourceHashCode.length();
for (int i = 0; i < len; i++) {
if (sourceHashCode.charAt(i) != hashCode.charAt(i)) {
difference++;
}
}
return difference;
}
private static BufferedImage resize(BufferedImage image, int width, int height) {
BufferedImage resizedImage = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);
Graphics2D g = resizedImage.createGraphics();
g.drawImage(image, 0, 0, width, height, null);
g.dispose();
return resizedImage;
}
private static int gray(int rgb) {
//将最高位(24-31)的信息(alpha通道)存储到a变量
int a = rgb & 0xff000000;
//取出次高位(16-23)红色分量的信息
int r = (rgb >> 16) & 0xff;
//取出中位(8-15)绿色分量的信息
int g = (rgb >> 8) & 0xff;
//取出低位(0-7)蓝色分量的信息
int b = rgb & 0xff;
// NTSC luma,算出灰度值
rgb = (r * 77 + g * 151 + b * 28) >> 8;
//(int)(r * 0.3 + g * 0.59 + b * 0.11)
//将灰度值送入各个颜色分量
return a | (rgb << 16) | (rgb << 8) | rgb;
}
public static int[] DCT(int[] pix, int n) {
double[][] iMatrix = new double[n][n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
iMatrix[i][j] = (double) (pix[i * n + j]);
}
}
double[][] quotient = coefficient(n); //求系数矩阵
double[][] quotientT = transposingMatrix(quotient, n); //转置系数矩阵
double[][] temp = matrixMultiply(quotient, iMatrix, n);
iMatrix = matrixMultiply(temp, quotientT, n);
int newpix[] = new int[n * n];
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
newpix[i * n + j] = (int) iMatrix[i][j];
}
}
return newpix;
}
public static int averageGray(int[] pix, int w, int h) {
int sum = 0;
for (int i = 0; i < h; i++) {
for (int j = 0; j < w; j++) {
sum = sum + pix[i * w + j];
}
}
return sum / (w * h);
}
计算哈希值
比较hash值,计算海明距离
图片缩放为9*8大小
将图片灰度化
差异值计算(每行相邻像素的差值,这样会生成8*8的差值,前一个像素大于后一个像素则为1,否则为0)
生成哈希值
比较hash值,计算海明距离
public class ImageDHash {
/**
* 计算dHash方法
*
* @param file 文件
* @return hash
*/
public static String getDHash(File file) {
//读取文件
BufferedImage srcImage;
try {
srcImage = ImageIO.read(file);
} catch (IOException e) {
e.printStackTrace();
return null;
}
//文件转成9*8像素,为算法比较通用的长宽
BufferedImage buffImg = new BufferedImage(9, 8, BufferedImage.TYPE_INT_RGB);
buffImg.getGraphics().drawImage(srcImage.getScaledInstance(9, 8, Image.SCALE_SMOOTH), 0, 0, null);
int width = buffImg.getWidth();
int height = buffImg.getHeight();
int[][] grayPix = new int[width][height];
StringBuffer figure = new StringBuffer();
for (int y = 0; y < height; y++) {
for (int x = 0; x < width; x++) {
//图片灰度化
int rgb = buffImg.getRGB(x, y);
int r = rgb >> 16 & 0xff;
int g = rgb >> 8 & 0xff;
int b = rgb & 0xff;
int gray = (r * 30 + g * 59 + b * 11) / 100;
grayPix[x][y] = gray;
//开始计算dHash 总共有9*8像素 每行相对有8个差异值 总共有 8*8=64 个
if (x != 0) {
long bit = grayPix[x - 1][y] > grayPix[x][y] ? 1 : 0;
figure.append(bit);
}
}
}
return figure.toString();
}
/**
* 计算海明距离
*
* 原本用于编码的检错和纠错的一个算法
* 现在拿来计算相似度,如果差异值小于一定阈值则相似,一般经验值小于5为同一张图片
*
* @param str1
* @param str2
* @return 距离
*/
private static long getHammingDistance(String str1, String str2) {
int distance;
if (str1 == null || str2 == null || str1.length() != str2.length()) {
distance = -1;
} else {
distance = 0;
for (int i = 0; i < str1.length(); i++) {
if (str1.charAt(i) != str2.charAt(i)) {
distance++;
}
}
}
return distance;
}
}
相比感知Hash算法,差异值Hash算法的速度要快的多,相比平均值Hash算法,差异值Hash算法在效率几乎相同的情况下的效果要更好,它是基于渐变实现的。所以在项目中选择了最后一种差异值Hash算法,结果也是与预期一致。