• elasticsearch多字段聚合实现方式


    1、背景

    我们知道在sql中是可以实现 group by 字段a,字段b,那么这种效果在elasticsearch中该如何实现呢?此处我们记录在elasticsearch中的3种方式来实现这个效果。

    2、实现多字段聚合的思路

    实现多字段聚合的思路
    图片来源:https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket-terms-aggregation.html
    从上图中,我们可以知道,可以通过3种方式来实现 多字段的聚合操作。

    3、需求

    根据省(province)和性别(sex)来进行聚合,然后根据聚合后的每个桶的数据,在根据每个桶中的最大年龄(age)来进行倒序排序。

    4、数据准备

    4.1 创建索引

    PUT /index_person
    {
    "settings": {
    "number_of_shards": 1
    },
    "mappings": {
    "properties": {
    "id": {
    "type": "long"
    },
    "name": {
    "type": "keyword"
    },
    "province": {
    "type": "keyword"
    },
    "sex": {
    "type": "keyword"
    },
    "age": {
    "type": "integer"
    },
    "address": {
    "type": "text",
    "analyzer": "ik_max_word",
    "fields": {
    "keyword": {
    "type": "keyword",
    "ignore_above": 256
    }
    }
    }
    }
    }
    }

    4.2 准备数据

    PUT /_bulk
    {"create":{"_index":"index_person","_id":1}}
    {"id":1,"name":"张三","sex":"男","age":20,"province":"湖北","address":"湖北省黄冈市罗田县匡河镇"}
    {"create":{"_index":"index_person","_id":2}}
    {"id":2,"name":"李四","sex":"男","age":19,"province":"江苏","address":"江苏省南京市"}
    {"create":{"_index":"index_person","_id":3}}
    {"id":3,"name":"王武","sex":"女","age":25,"province":"湖北","address":"湖北省武汉市江汉区"}
    {"create":{"_index":"index_person","_id":4}}
    {"id":4,"name":"赵六","sex":"女","age":30,"province":"北京","address":"北京市东城区"}
    {"create":{"_index":"index_person","_id":5}}
    {"id":5,"name":"钱七","sex":"女","age":16,"province":"北京","address":"北京市西城区"}
    {"create":{"_index":"index_person","_id":6}}
    {"id":6,"name":"王八","sex":"女","age":45,"province":"北京","address":"北京市朝阳区"}

    5、实现方式

    5.1 multi_terms实现

    5.1.1 dsl

    GET /index_person/_search
    {
    "size": 0,
    "aggs": {
    "agg_province_sex": {
    "multi_terms": {
    "size": 10,
    "shard_size": 25,
    "order":{
    "max_age": "desc"
    },
    "terms": [
    {
    "field": "province",
    "missing": "defaultProvince"
    },
    {
    "field": "sex"
    }
    ]
    },
    "aggs": {
    "max_age": {
    "max": {
    "field": "age"
    }
    }
    }
    }
    }
    }

    5.1.2 java 代码

    @Test
    @DisplayName("多term聚合-根据省和性别聚合,然后根据最大年龄倒序")
    public void agg01() throws IOException {
    SearchRequest searchRequest = new SearchRequest.Builder()
    .size(0)
    .index("index_person")
    .aggregations("agg_province_sex", agg ->
    agg.multiTerms(multiTerms ->
    multiTerms.terms(term -> term.field("province"))
    .terms(term -> term.field("sex"))
    .order(new NamedValue<>("max_age", SortOrder.Desc))
    )
    .aggregations("max_age", ageAgg ->
    ageAgg.max(max -> max.field("age")))
    )
    .build();
    System.out.println(searchRequest);
    SearchResponse response = client.search(searchRequest, Object.class);
    System.out.println(response);
    }

    5.1.3 运行结果

    运行结果

    5.2 script实现

    5.2.1 dsl

    GET /index_person/_search
    {
    "size": 0,
    "runtime_mappings": {
    "runtime_province_sex": {
    "type": "keyword",
    "script": """
    String province = doc['province'].value;
    String sex = doc['sex'].value;
    emit(province + '|' + sex);
    """
    }
    },
    "aggs": {
    "agg_province_sex": {
    "terms": {
    "field": "runtime_province_sex",
    "size": 10,
    "shard_size": 25,
    "order": {
    "max_age": "desc"
    }
    },
    "aggs": {
    "max_age": {
    "max": {
    "field": "age"
    }
    }
    }
    }
    }
    }

    5.2.2 java代码

    @Test
    @DisplayName("多term聚合-根据省和性别聚合,然后根据最大年龄倒序")
    public void agg02() throws IOException {
    SearchRequest searchRequest = new SearchRequest.Builder()
    .size(0)
    .index("index_person")
    .runtimeMappings("runtime_province_sex", field -> {
    field.type(RuntimeFieldType.Keyword);
    field.script(script -> script.inline(new InlineScript.Builder()
    .lang(ScriptLanguage.Painless)
    .source("String province = doc['province'].value;\n" +
    " String sex = doc['sex'].value;\n" +
    " emit(province + '|' + sex);")
    .build()));
    return field;
    })
    .aggregations("agg_province_sex", agg ->
    agg.terms(terms ->
    terms.field("runtime_province_sex")
    .size(10)
    .shardSize(25)
    .order(new NamedValue<>("max_age", SortOrder.Desc))
    )
    .aggregations("max_age", minAgg ->
    minAgg.max(max -> max.field("age")))
    )
    .build();
    System.out.println(searchRequest);
    SearchResponse response = client.search(searchRequest, Object.class);
    System.out.println(response);
    }

    5.2.3 运行结果

    运行结果

    5.3 通过copyto实现

    我本地测试过,通过copyto没实现,此处故先不考虑

    5.5 通过pipeline来实现

    实现思路:
    创建mapping时,多创建一个字段pipeline_province_sex,该字段的值由创建数据时指定pipeline来生产。

    5.4.1 创建mapping

    PUT /index_person
    {
    "settings": {
    "number_of_shards": 1
    },
    "mappings": {
    "properties": {
    "id": {
    "type": "long"
    },
    "name": {
    "type": "keyword"
    },
    "province": {
    "type": "keyword"
    },
    "sex": {
    "type": "keyword"
    },
    "age": {
    "type": "integer"
    },
    "pipeline_province_sex":{
    "type": "keyword"
    },
    "address": {
    "type": "text",
    "analyzer": "ik_max_word",
    "fields": {
    "keyword": {
    "type": "keyword",
    "ignore_above": 256
    }
    }
    }
    }
    }
    }

    此处指定了一个字段pipeline_province_sex,该字段的值会由pipeline来处理。

    5.4.2 创建pipeline

    PUT _ingest/pipeline/pipeline_index_person_provice_sex
    {
    "description": "将provice和sex的值拼接起来",
    "processors": [
    {
    "set": {
    "field": "pipeline_province_sex",
    "value": ["{{province}}", "{{sex}}"]
    },
    "join": {
    "field": "pipeline_province_sex",
    "separator": "|"
    }
    }
    ]
    }

    5.4.3 插入数据

    PUT /_bulk?pipeline=pipeline_index_person_provice_sex
    {"create":{"_index":"index_person","_id":1}}
    {"id":1,"name":"张三","sex":"男","age":20,"province":"湖北","address":"湖北省黄冈市罗田县匡河镇"}
    {"create":{"_index":"index_person","_id":2}}
    {"id":2,"name":"李四","sex":"男","age":19,"province":"江苏","address":"江苏省南京市"}
    {"create":{"_index":"index_person","_id":3}}
    {"id":3,"name":"王武","sex":"女","age":25,"province":"湖北","address":"湖北省武汉市江汉区"}
    {"create":{"_index":"index_person","_id":4}}
    {"id":4,"name":"赵六","sex":"女","age":30,"province":"北京","address":"北京市东城区"}
    {"create":{"_index":"index_person","_id":5}}
    {"id":5,"name":"钱七","sex":"女","age":16,"province":"北京","address":"北京市西城区"}
    {"create":{"_index":"index_person","_id":6}}
    {"id":6,"name":"王八","sex":"女","age":45,"province":"北京","address":"北京市朝阳区"}

    注意: 此处的插入需要指定上一步的pipeline
    PUT /_bulk?pipeline=pipeline_index_person_provice_sex

    5.4.4 聚合dsl

    GET /index_person/_search
    {
    "size": 0,
    "aggs": {
    "agg_province_sex": {
    "terms": {
    "field": "pipeline_province_sex",
    "size": 10,
    "shard_size": 25,
    "order": {
    "max_age": "desc"
    }
    },
    "aggs": {
    "max_age": {
    "max": {
    "field": "age"
    }
    }
    }
    }
    }
    }

    5.4.5 运行结果

    运行结果

    6、实现代码

    https://gitee.com/huan1993/spring-cloud-parent/blob/master/es/es8-api/src/main/java/com/huan/es8/aggregations/bucket/MultiTermsAggs.java

    7、参考文档

    1. https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket-terms-aggregation.html
  • 相关阅读:
    DASCTF X CBCTF 2023
    PHP 基础/练习
    常用接口测试及接口抓包常用的测试工具
    Http协议和Https协议
    [msg_msg] corCTF2021 -- fire_of_salvation
    【1161. 最大层内元素和】
    【JS】前端面试常见手写题总结
    苦瓜功能稻降碳90% 国稻种芯-517:何登骥水稻旱作节水80%
    VSCode汉化设置
    Spring Boot整合Redis实现订单超时处理
  • 原文地址:https://www.cnblogs.com/huan1993/p/16890914.html