• 文献阅读笔记(2022.11.14)


    1 基本信息

    文献名:《Subjective sleep alterations in healthy subjects worldwide during COVID-19 pandemic: A systematic review, meta-analysis and metaregression》(译名:新冠肺炎大流行期间全球健康受试者的主观睡眠变化:一项系统综述、元分析和元回归)

    期刊:Sleep Medicine

    期刊收录库:SCI(Q2)

    作者:Serena Scarpelli、Andrea Zagaria、Pietro-Luca Ratti等

    单位:罗马大学

    2 摘要

    Objective: We conducted a systematic review and meta-analysis to provide an update on sleep quality in different world areas and better characterize subjective sleep alterations during the COVID-19 pandemic. Considering gender distribution and specific pandemic-related parameters, we also intend to identify significant predictors of sleep problems.

    Methods: Six electronic databases were searched from December 2019 to November 2021 for studies investigating sleep during COVID-19 employing the Pittsburgh Sleep Quality Index(匹茨堡睡眠质量指数), the Medical Outcomes Study Sleep(睡眠医学结果研究), the Insomnia Severity Index(失眠严重程度指数) or the Epworth Sleepiness Scale(艾普沃斯睡眠量表). Random-effects models(随机效应模型) were implemented to estimate the pooled raw means of subjective sleep alterations. Also, we considered the role of several pandemic-related parameters (i.e., days from the first COVID-19 case, government stringency index, new cases for a million people, new deaths for a million people) by means of meta-regression analyses.

    Results: A total of 139 studies were selected. The pooled mean of the global Pittsburgh Sleep Quality Index score (PSQIgen) was 6.73 (95% CI, 6.61e6.85). The insomnia severity index score was reported from 50 studies with a pooled mean of 8.44 (95% CI, 7.53e9.26). Subgroup analyses confirmed that most subcategories had poor sleep quality and subclinical insomnia. Meta-regressions showed that PSQIgen was predicted by days from the first COVID-19 case and government restrictions with a negative slope and by female gender with a positive slope. The government stringency index was positively correlated with the direct subjective evaluation of sleep quality.

    Conclusions: We found an overall impaired sleep and widespread subthreshold insomnia during the COVID-19 pandemic. The female percentage seems to be the best predictor of impaired sleep quality, consistently to the available literature. Noteworthy, sleep alterations were inversely associated with governmental restrictions and decreased during the pandemic. Our results give a contribution to critically orienting further studies on sleep since COVID-19 pandemic.

    3 关键词

    COVID-19;SARS-CoV-2;Sleep;Sleep quality;Subjective sleep;Sleep alterations;Pittsburgh sleep quality index;Insomnia;Government stringency index

    4 文献内容

    4.1 引言

    1.提供新冠肺炎疫情期间,不同地区人员睡眠质量情况;

    2.根据睡眠质量标准化的参数,提供更好地主观睡眠变化的描述;

    3.建立睡眠变化与新冠肺炎相关的量化关系

    4.2 材料与方法

    该文献已在PROSPERO international database中注册(PROSPERO (york.ac.uk)

    1.搜索策略

    数据库:使用PubMed、MEDLINE、ScienceDirect、Scopus、Web of science五个电子数据库

    搜索关键字:COVID-19、coronavirus、2019-nCoV、SARS-CoV-2与sleep disorders 、sleep problems、sleep quality、sleep difficulties 与Pittsburgh Sleep Quality Index、Medical Outcomes Study Sleep、Insomnia Severity Index、EpworthSleepiness Scale

    由两人独立筛选标题、关键字、图表与正文

    2.入选标准

    人选:不限年龄、性别(除孕妇外),无睡眠障碍

    时期:新冠肺炎流行期(2019-2021)

    量化指标:PSQI、MOS-S、ISI、ESS

    不包括综述文章,没有可供元分析计算数值的文章

    3.结果

    文章对量化指标进行了介绍,并将研究对象分为几个类别及不同地区

    4.数据提取

    数据提取内容包括:样本量、评估措施、研究地点、女性占比、年龄(均值、中值或区间)、人口类型、研究时期、用于元分析的数据

    5.质量评价

    使用纽卡斯尔-渥太华量表(NOS)进行横断面研究,以评估纳入论文的偏差风险。

    6.数据分析

    基于R语言使用meta和dmetar包。

    4.3 结果

    1.研究选项

    共搜索到1084篇文献,删除重复项后余下456篇。根据前期设定,选定139篇全文筛选文献,最终确定这139篇文献进行元分析。

    2.研究特点

    总结出文献中统计人群的国别、样本数、女性占比、平均年龄、人群类型、评估指标、NOS

    3.研究质量

    通过NOS确定研究文献质量

    4.元分析

    5.对照组分析

    6.元回归分析

    5 分析与思考

    暂无

     

  • 相关阅读:
    hdlbits系列verilog解答(7458芯片)-10
    ecology报错 License文件上传出错!
    【Java 进阶篇】JavaScript 动态表格案例
    oracle 临时表
    本地生活服务正在借助小程序迎战增量市场
    服务器为什么要一直开机?
    使用gitflow时如何合并hotfix
    验证了一遍CVAT的安装(Windows 11)
    Spring Boot Jasypt 3.0.4 报错---算法加解密使用不一致
    记录-2023/11/18
  • 原文地址:https://blog.csdn.net/m0_49939117/article/details/127854956