
Suppose the dataset contains two positive samples x ( 1 ) = [ 1 , 1 ] T x^{(1)}=[1,1]^T x(1)=[1,1]T and x ( 2 ) = [ 2 , 2 ] T x^{(2)}=[2,2]^T x(2)=[2,2]T, and two negative samples x ( 3 ) = [ 0 , 0 ] T x^{(3)}=[0,0]^T x(3)=[0,0]T and x ( 4 ) = [ − 1 , 0 ] T x^{(4)}=[-1,0]^T x(4)=[−1,0]T. Please calculate the SVM decision hyperplane.
min
λ
J
(
λ
)
=
1
2
∑
i
=
1
N
∑
j
=
1
N
λ
i
λ
j
y
(
i
)
y
(
j
)
(
x
(
i
)
)
T
x
(
j
)
−
∑
i
=
1
N
λ
i
\min_\lambda\ {\mathcal{J}(\lambda)} = \frac{1}{2}\sum_{i=1}^N\sum_{j=1}^N \lambda_i\lambda_jy^{(i)}y^{(j)}(x^{(i)})^Tx^{(j)} - \sum_{i=1}^N\lambda_i
λmin J(λ)=21i=1∑Nj=1∑Nλiλjy(i)y(j)(x(i))Tx(j)−i=1∑Nλi
s
.
t
.
λ
i
⩾
0
,
∑
i
=
1
N
λ
i
y
(
i
)
=
0
s.t. \ \ \ \ \ \ \ \ \lambda_i \geqslant 0,\ \ \ \ \ \ \sum_{i=1}^N\lambda_iy^{(i)}=0
s.t. λi⩾0, i=1∑Nλiy(i)=0
由
D
a
t
a
s
e
t
D
:
{
x
:
{
[
1
,
1
]
,
[
2
,
2
]
,
[
0
,
0
]
,
[
−
1
,
0
]
}
,
y
:
{
1
,
1
,
−
1
,
−
1
}
}
Dataset\ D:\{x:\{[1,1],[2,2],[0,0],[-1,0]\},y:\{1,1,-1,-1\}\}
Dataset D:{x:{[1,1],[2,2],[0,0],[−1,0]},y:{1,1,−1,−1}}可得下式:
min
λ
J
(
λ
)
=
1
2
(
2
λ
1
2
+
8
λ
2
2
+
λ
4
2
+
8
λ
1
λ
2
+
2
λ
1
λ
4
+
4
λ
2
λ
4
)
−
λ
1
−
λ
2
−
λ
3
−
λ
4
s
.
t
λ
1
⩾
0
,
λ
2
⩾
0
,
λ
3
⩾
0
,
λ
4
⩾
0
λ
1
+
λ
2
−
λ
3
−
λ
4
=
0
\min_\lambda\ {\mathcal{J}(\lambda)} = \frac{1}{2}(2\lambda_1^2+8\lambda_2^2+\lambda_4^2+8\lambda_1\lambda_2+2\lambda_1\lambda_4+4\lambda_2\lambda_4) \\- \lambda_1-\lambda_2-\lambda_3-\lambda_4\\ s.t \ \ \ \ \ \ \ \lambda_1 \geqslant 0,\lambda_2\geqslant 0,\lambda_3\geqslant 0,\lambda_4\geqslant 0\\ \lambda_1+\lambda_2-\lambda_3-\lambda_4 = 0
λmin J(λ)=21(2λ12+8λ22+λ42+8λ1λ2+2λ1λ4+4λ2λ4)−λ1−λ2−λ3−λ4s.t λ1⩾0,λ2⩾0,λ3⩾0,λ4⩾0λ1+λ2−λ3−λ4=0
since
λ
1
+
λ
2
=
λ
3
+
λ
4
→
λ
3
=
λ
1
+
λ
2
−
λ
4
\lambda_1+\lambda_2 = \lambda_3+\lambda_4 \to \lambda_3 = \lambda_1+\lambda_2 - \lambda_4
λ1+λ2=λ3+λ4→λ3=λ1+λ2−λ4:
min
λ
J
(
λ
)
=
λ
1
2
+
4
λ
2
2
+
1
2
λ
4
2
+
4
λ
1
λ
2
+
λ
1
λ
4
+
2
λ
2
λ
4
−
2
λ
1
−
2
λ
2
s
.
t
λ
1
⩾
0
,
λ
2
⩾
0
⟹
求
偏
导
{
∂
J
∂
λ
1
=
2
λ
1
+
4
λ
2
+
λ
4
−
2
=
0
∂
J
∂
λ
2
=
4
λ
1
+
8
λ
2
+
2
λ
4
−
2
=
0
∂
J
∂
λ
4
=
λ
1
+
2
λ
2
+
λ
4
=
0
\min_\lambda\ {\mathcal{J}(\lambda)} = \lambda_1^2+4\lambda_2^2+\frac{1}{2}\lambda_4^2+4\lambda_1\lambda_2+\lambda_1\lambda_4+2\lambda_2\lambda_4 - 2\lambda_1-2\lambda_2\\ s.t \ \ \ \ \ \ \ \lambda_1 \geqslant 0,\lambda_2\geqslant 0 \\ \\ \Longrightarrow ^{求偏导}\\ \left\{
Lagrange无解,所以极小值在边界上:
同理可得: