需要源码和数据集请点赞关注收藏后评论区留言~~~
下面我们将使用循环神经网络训练来自18种起源于不同语言的数千种姓氏,并根据拼写方式预测名称的来源。
总共有18个txt文件,并且对它们进行预处理,输出如下
部分预处理代码如下
- from __future__ import unicode_literals, print_function, division
- from io import open
- import glob
- import os
-
- def findFiles(path): return glob.glob(path)
-
- print(findFiles('data/names/*.txt'))
-
- import unicodedata
- import string
-
- all_letters = string.ascii_letters + " .,;'"
- n_letters = len(all_letters)
-
- return ''.join(
- c for c in unicodedata.normalize('NFD', s)
- if unicodedata.category(c) != 'Mn'
- and c in all_letters
- )
-
-
- for filename in findFiles('data/names/*.txt'):
- category = os.path.splitext(os.path.basename(filename))[0]
- all_categories.append(category)
- lines = readLines(filename)
- category_lines[category] = lines
-
- n_categories = len(all_categories)
现在已经整理好了所有数据集种的名字,这里需要将它们转换为张量以使用它们,为了表示单个字母,这里使用独热编码的方法
在PyTorch种构建循环神经网络涉及在多个时间步长上克隆多个RNN层 的参数,RNN层保留了Hidden State和梯度,这些状态完全由PyTorch的计算图来自动完成维护,这意味我们只需要关心前馈网络而不需要关注反向传播
训练该网络所需要做的是向他输入大量的数据,令其进行预测,然后告诉它是否有错误
每个训练的循环包含下面七个步骤
1:创建输入和目标Tensor
2:创建归零的初始Hidden State
3:输入一个字母
4:传递Hidden State给下一个字母输入
5:比较最终输出和目标
6:反向传播
7:返回输出和损失
平均损失如下
绘制网络的历史损失变化,以显示网络学习情况
可见随着训练次数的增加损失逐渐 梯度下降
为了了解网络在不同类别上的表现如何,这里将创建一个混淆矩阵,为每种实际语言指示网络猜测那种语言,结果如下图,可以从主轴上挑出一些亮点,以显示它猜错了哪些语言
可见中文/朝鲜语 西班牙语/意大利语会有混淆,网络预测希腊语名字十分准确,但是英语名字预测的很糟糕
大家可以输入任何希望预测的名字到模型中,网络会给出几个名字最有可能的语言类型
需要全部源码请点赞关注收藏后评论区留言~~~
- from __future__ import unicode_literals, print_function, division
-
-
- from io import open
- import glob
- import os
-
- def findFiles(path): return glob.glob(path)
-
- print(findFiles('data/names/*.txt'))
-
- import unicodedata
- import string
-
- all_letters = string.ascii_letters + " .,;'"
- n_letters = len(all_letters)
-
- # Turn a Unicode string to plain ASCII, thanks to https://stackoverflow.com/a/518232/2809427
- def unicodeToAscii(s):
- return ''.join(
- c for c in unicodedata.normalize('NFD', s)
- if unicodedata.category(c) != 'Mn'
- and c in all_letters
- )
-
- print(unicodeToAscii('Ślusàrski'))
-
- # Build the category_lines dictionary, a list of names per language
- category_lines = {}
- all_categories = []
-
- # Read a file and split into lines
- def readLines(filename):
- lines = open(filename, encoding='utf-8').read().strip().split('\n')
- return [unicodeToAscii(line) for line in lines]
-
- for filename in findFiles('data/names/*.txt'):
- category = os.path.splitext(os.path.basename(filename))[0]
- all_categories.append(category)
- lines = readLines(filename)
- category_lines[category] = lines
-
- n_categories = len(all_categories)
-
-
-
- #
- #
-
- # In[33]:
-
-
- #print(category_lines['Italian'][:5])
-
-
- # Turning Names into Tensors
-
- #
-
- # In[34]:
-
-
- import torch
-
- # Find letter index from all_letters, e.g. "a" = 0
- def letterToIndex(letter):
- return all_letters.find(letter)
-
- # Just for demonstration, turn a letter into a <1 x n_letters> Tensor
- def letterToTensor(letter):
- tensor = torch.zeros(1, n_letters)
- tensor[0][letterToIndex(letter)] = 1
- return tensor
-
- # Turn a line into a <line_length x 1 x n_letters>,
- # or an array of one-hot letter vectors
- def lineToTensor(line):
- tensor = torch.zeros(len(line), 1, n_letters)
- for li, letter in enumerate(line):
- tensor[li][0][letterToIndex(letter)] = 1
- return tensor
-
- print(letterToTensor('J'))
-
- print(lineToTensor('Jones').size())
-
-
-
- # This RNN module (mostly copied from `the PyTorch for Torch users
- # tutorial <https://pytorch.org/tutorials/beginner/former_torchies/
- # nn_tutorial.html#example-2-recurrent-net>`__)
- # is just 2 linear layers which operate on an input and hidden state, with
- # a LogSoftmax layer after the output.
- #
- # .. figure:: https://i.imgur.com/Z2xbySO.png
- # :alt:
- #
- #
- #
- #
-
- # In[35]:
-
-
- i
- self.i2h = nn.Linear(input_size + hidden_size, hidden_size)
- self.i2o = nn.Linear(input_size + hidden_size, output_size)
- self.softmax = nn.LogSoftmax(dim=1)
-
- def forward(self, input, hidden):
- combined = torch.cat((input, hidden), 1)
- hidden = self.i2h(combined)
- output = self.i2o(combined)
- output = self.softmax(output)
- return output, hidden
-
- def initHidden(self):
- return torch.zeros(1, self.hidden_size)
-
- n_hidden = 128
- rnn = RNN(n_letters, n_hidden, n_categories)
-
-
- # To run a step of this network we need to pass an input (in our case, the
- # Tensor for the current letter) and a previous hidden state (which we
- # initialize as zeros at first). We'll get back the output (probability of
- # each language) and a next hidden state (which we keep for the next
- # step).
- #
- #
- #
- # In[36]:
- inp
- # For the sake of efficiency we don't want to be creating a new Tensor for
- # every step, so we will use ``lineToTensor`` instead of
- # ``letterToTensor`` and use slices. This could be further optimized by
- # pre-computing batches of Tensors.
- #
- #
- #
-
- # In[37]:
-
-
- input = lineToTensor('Albert')
- hidden = torch.zeros(1, n_hidden)
-
- output, next_hidden = rnn(input[0], hidden)
- print(output)
-
-
- # As you can see the output is a ``<1 x n_categories>`` Tensor, where
- # every item is the likelihood of that category (higher is more likely).
- #
- #
- #
-
- # Training
- # ========
- # Preparing for Training
- # ----------------------
- #
- # Before going into training we should make a few helper functions. The
- # first is to interpret the output of the network, which we know to be a
- # likelihood of each category. We can use ``Tensor.topk`` to get the index
- # of the greatest value:
- #
- #
- #
-
- # In[38]:
-
-
- def categoryFromOutput(output):
- top_n, top_i = output.topk(1)
- category_i = top_i[0].item()
- return all_categories[category_i], category_i
-
- #print(categoryFromOutput(output))
-
-
- # We will also want a quick way to get a training example (a name and its
- # language):
- #
- #
- #
-
- # In[39]:
-
-
- import random
-
- def randomChoice(l):
- return l[random.randint(0, len(l) - 1)]
-
- def randomTrainingExample():
- category = randomChoice(all_categories)
- line = randomChoice(category_lines[category])
- category_tensor = torch.tensor([all_categories.index(category)], dtype=torch.long)
- line_tensor = lineToTensor(line)
- return category, line, category_tensor, line_tensor
-
- for i in range(10):
- category, line, category_tensor, line_tensor = randomTrainingExample()
- print('category =', category, '/ line =', line)
-
-
- # Training the Network
- # --------------------
- #
- # Now all it takes to train this network is show it a bunch of examples,
- # have it make guesses, and tell it if it's wrong.
- #
- # For the loss function ``nn.NLLLoss`` is appropriate, since the last
- # layer of the RNN is ``nn.LogSoftmax``.
- #
- #
- #
- # In[40]:
- criterion = nn.NLLLoss()
- #
- # - Keep hidden state for next letter
- #
- # - Compare final output to target
- # - Back-propagate
- # - Return the output and loss
- #
- #
- #
- # In[41]:
- learning_rate = 0.005 # If you set this too high, it might explode. If too low, it might not learn
- def train(category_tensor, line_tensor):
- hidden = rnn.initHidden()
- rnn.zero_grad()
- for i in range(line_tensor.size()[0]):
- output, hidden = rnn(line_tensor[i], hidden)
- loss = criterion(output, category_tensor)
- loss.backward()
- # Add parameters' gradients to their values, multiplied by learning rate
- for p in rnn.parameters():
- p.data.add_(p.grad.data, alpha=-learning_rate)
-
- return output, loss.item()
-
-
- # Now we just have to run that with a bunch of examples. Since the
- # ``train`` function returns both the output and loss we can print its
- # guesses and also keep track of loss for plotting. Since there are 1000s
- # of examples we print only every ``print_every`` examples, and take an
- # average of the loss.
- #
- #
- #
-
- m = math.floor(s / 60)
- s -= m * 60
- return '%dm %ds' % (m, s)
-
- start = time.time()
-
- for iter in range(1, n_iters + 1):
- category, line, category_tensor, line_tensor = randomTrainingExample()
- output, loss = train(category_tensor, line_tensor)
- current_loss += loss
-
- # Print iter number, loss, name and guess
- if iter % print_every == 0:
- guess, guess_i = categoryFromOutput(output)
- correct = '✓' if guess == category else '✗ (%s)' % category
- print('%d %d%% (%s) %.4f %s / %s %s' % (iter, iter / n_iters * 100, timeSince(start), loss, line, guess, correct))
-
- # Add current loss avg to list of losses
- if iter % plot_every == 0:
- all_losses.append(current_loss / plot_every)
- current_loss = 0
-
-
- # Plotting the Results
- # --------------------
- #
- # Plotting the historical loss from ``all_losses`` shows the network
- # learning:
- #
- #
- #
-
- # In[22]:
-
-
- plt.figure()
- plt.plot(all_losses)
-
-
- # Evaluating the Results
- # ======================
- #
- # To see how well the network performs on different categories, we will
- # create a confusion matrix, indicating for every actual language (rows)
- # which language the network guesses (columns). To calculate the confusion
- # matrix a bunch of samples are run through the network with
- # ``evaluate()``, which is the same as ``train()`` minus the backprop.
- #
- #
- #
-
- # In[46]:
-
-
- # Keep track of correct guesses in a confusion matrix
- confusion = torch.zeros(n_categories, n_categories)
- n_confusion = 10000
-
- # Just return an output given a line
- def evaluate(line_tensor):
- hidde
- # Go through a bunch of examples and record which are correctly guessed
- for i in range(n_confusion):
- category, line, category_tensor, line_tensor = randomTrainingExample()
- output = evaluate(line_tensor)
- guess, guess_i = categoryFromOutput(output)
- category_i = all_categories.index(category)
- confusion[category_i][guess_i] += 1
-
- # Normalize by dividing every row by its sum
- for i in range(n_categories):
- confusion[i] = confusion[i] / confusion[i].sum()
-
- # Set up plot
- fig = plt.figure()
- ax = fig.add_subplot(111)
- cax = ax.matshow(confusion.numpy())
- fig.colorbar(cax)
-
- # Set up axes
- ax.set_xticklabels([''] + all_categories, rotation=90)
- ax.set_yticklabels([''] + all_categories)
-
- # Force label at every tick
- ax.xaxis.set_major_locator(ticker.MultipleLocator(1))
- ax.yaxis.set_major_locator(ticker.MultipleLocator(1))
-
-
- # You can pick out bright spots off the main axis that show which
- # languages it guesses incorrectly, e.g. Chinese for Korean, and Spanish
- # for Italian. It seems to do very well with Greek, and very poorly with
- # English (perhaps because of overlap with other languages).
- #
- #
- #
-
- # Running on User Input
- # ---------------------
- #
- #
- #
-
- # In[47]:
-
-
- def predict(input_line, n_predictions=3):
- print('\n> %s' % input_line)
- with t evaluate(lineToTensor(input_line))
- = []
-
- for i in range(n_predictions):
- value = topv[0][i].item()
- category_index = topi[0][i].item()
- print('(%.2f) %s' % (value, all_categories[category_index]))
- predictions.append([value, all_categories[category_index]])
-
- predict('Dovesky')
- predict('Jackson')
- predict('Satoshi')
-
-
- # The final versions of the scripts `in the Practical PyTorch
- # repo <https://github.com/spro/practical-pytorch/tree/master/char-rnn-classification>`__
- # split the above code into a few files:
- #
- # - ``data.py`` (loads files)
- # - ``model.py`` (defines the RNN)
- # - ``train.py`` (runs training)
- # - ``predict.py`` (runs ``predict()`` with command line arguments)
- # - ``server.py`` (serve prediction as a JSON API with bottle.py)
- #
- # Run ``train.py`` to train and save the network.
- #
- # Run ``predict.py`` with a name to view predictions:
- #
- # ::
- #
- # $ python predict.py Hazaki
- # (-0.42) Japanese
- # (-1.39) Polish
- irst name -> gender
- # - Character name -> writer
- # - Page title -> blog or subreddit
- #
- # - Get better results with a bigger and/or better shaped network
- #
- # - Add more linear layers
- # - Try the ``nn.LSTM`` and ``nn.GRU`` layers
- # - Combine multiple of these RNNs as a higher level network
- #
- #
- #
创作不易 觉得有帮助请点赞关注收藏~~~