• 机器学习笔记 十八:基于3种方法的随机森林模型分析房屋参数重要性


    机器学习笔记 十六:基于Boruta算法的随机森林(RF)特征重要性评估与本篇结合,对比分析。

    1. 探索性数据分析

    输入参数: id、date、bedrooms、bathrooms、sqft_living、sqft_lot、floors、waterfront、view、condition、grade、sqft_above、sqft_basement、yr_built、yr_renovated、zipcode、lat、long、sqft_living15、sqft_lot15、
    输出参数: price

    import numpy as np
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.ensemble import RandomForestRegressor
    from sklearn.svm import SVC
    from sklearn.linear_model import SGDClassifier
    from sklearn.metrics import confusion_matrix, classification_report
    from sklearn.preprocessing import StandardScaler, LabelEncoder
    from sklearn.model_selection import train_test_split, GridSearchCV, cross_val_score
    from sklearn.model_selection import RandomizedSearchCV
    from sklearn.metrics import accuracy_score
    from collections import defaultdict
    from sklearn.metrics import r2_score
    
    import sys
    
    sys.path.insert(0, 'boruta_py-master/boruta')
    from boruta import BorutaPy
    
    sys.path.insert(0, 'random-forest-importances-master/src')
    from rfpimp import *
    
    %matplotlib inline
    
    house = pd.read_csv("C:/Users/Administrator/Desktop/kc_house_data.csv")
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21
    • 22
    • 23
    • 24
    • 25
    • 26
    • 27
    # 查看数据是否有空
    print(house.isnull().any())
    # 检查类型
    print(house.dtypes)
    
    • 1
    • 2
    • 3
    • 4
    # 删除id和date两列数据,因为他们不会使用
    house = house.drop(['id', 'date'],axis=1)
    
    • 1
    • 2

    用散点图展示数据之间的相关性:

    with sns.plotting_context("notebook",font_scale=2.5):
        g = sns.pairplot(house[['sqft_lot','sqft_above','price','sqft_living','bedrooms']], 
                     hue='bedrooms', palette='tab20',size=6)
    g.set(xticklabels=[]);
    
    • 1
    • 2
    • 3
    • 4

    在这里插入图片描述
    绘制参数热图(相关性分析):

    corr = house.corr()
    
    mask = np.zeros_like(corr, dtype=np.bool)
    mask[np.triu_indices_from(mask)] = True
    
    f, ax = plt.subplots(figsize=(10, 8))
    cmap = sns.diverging_palette(220, 10, as_cmap=True)
    
    sns.heatmap(corr, mask=mask, cmap=cmap, center=0,
                square=True, linewidths=0.5)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10

    在这里插入图片描述

    1.1 数据集分割(训练集、测试集)
    df_train, df_test = train_test_split(house, test_size=0.20,random_state=42)
    df_train = df_train[list(house.columns)]
    df_test = df_test[list(house.columns)]
    
    X_train, y_train = df_train.drop('price',axis=1), df_train['price']
    X_test, y_test = df_test.drop('price',axis=1), df_test['price']
    
    X_train.shape,y_train.shape,X_test.shape,y_test.shape
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    ((17290, 18), (17290,), (4323, 18), (4323,))

    1.2 模型拟合
    def predictions (rf,X_test,y_test):
        # Make predictions on test data
        predictions = rf.predict(X_test)
        # Performance metrics
        errors = abs(predictions - y_test)
        print('Metrics for Random Forest Regressor')
        print('Average absolute error:', round(np.mean(errors), 2), 'degrees.')
        # Calculate mean absolute percentage error (MAPE)
        mape = np.mean(100 * (errors / y_test))
        # Compare to baseline
        baseline_mape=np.mean(y_test)
        improvement_baseline = 100 * abs(mape - baseline_mape) / baseline_mape
        print('Improvement over baseline:', round(improvement_baseline, 2), '%.')
        # Calculate and display accuracy
        accuracy = 100 - mape
        print('Accuracy:', round(accuracy, 2), '%.')
        print('R2 score:',r2_score(predictions,y_test))
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    rf_reg = RandomForestRegressor(n_estimators=200,
                                min_samples_leaf=2,
                                n_jobs=-1,
                                oob_score=True,
                                random_state=42)
    rf_reg.fit(X_train, y_train)
    
    predictions(rf_reg,X_test,y_test)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8

    Metrics for Random Forest Regressor
    Average absolute error: 72704.15 degrees.
    Improvement over baseline: 100.0 %.
    Accuracy: 86.88 %.
    R2 score: 0.8381720745711922

    2. 特征重要性比较

    2.1 Gini Importance
    features = np.array(X_train.columns)
    imps_gini=rf_reg.feature_importances_
    std_gini = np.std([tree.feature_importances_ for tree in rf_reg.estimators_],
                 axis=0)
    indices_gini = np.argsort(imps_gini)
    
    plt.title('Feature Importances')
    plt.barh(range(len(indices_gini)), imps_gini[indices_gini], yerr=std_gini[indices_gini],color='black', align='center')
    plt.yticks(range(len(indices_gini)), features[indices_gini])
    plt.xlabel('Gini Importance')
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11

    在这里插入图片描述

    2.2 Permutation Importance
    def permutation_importances(rf, X_train, y_train, metric):
        baseline = metric(rf, X_train, y_train)
        imp = []
        std = []
        for col in X_train.columns:
            tmp=[]
            for i in range(10):
                save = X_train[col].copy()
                X_train[col] = np.random.permutation(X_train[col]) # permutation():按照给定列表生成一个打乱后的随机列表
                m = metric(rf, X_train, y_train)
                X_train[col] = save
                tmp.append(m)
            imp.append(baseline - np.mean(tmp))
            std.append(np.std(tmp))
        return np.array(imp),np.array(std)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    np.random.seed(10)
    imps_perm, std_perm = permutation_importances(rf_reg, X_train, y_train,oob_regression_r2_score)
    
    features = np.array(X_train.columns)
    indices_perm = np.argsort(imps_perm)
    
    plt.title('Feature Importances')
    plt.barh(range(len(indices_perm)), imps_perm[indices_perm], yerr=std_perm[indices_perm],color='black', align='center')
    plt.yticks(range(len(indices_perm)), features[indices_perm])
    plt.xlabel('Permutation Importance')
    plt.show()
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11

    在这里插入图片描述
    可以看出lat的重要性升高

    2.3 Boruta
    forest_reg = RandomForestRegressor(min_samples_leaf=2,
                                    n_jobs=-1,
                                    oob_score=True,
                                    random_state=42)
    feat_selector_reg = BorutaPy(forest_reg, verbose=2,max_iter=50)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    np.random.seed(10)
    
    import time
    start = time.time()
    feat_selector_reg.fit(X_train.values, y_train.values)
    end = time.time()
    print(end - start)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7

    Iteration: 1 / 50
    Confirmed: 0
    Tentative: 18
    Rejected: 0
    Iteration: 2 / 50
    Confirmed: 0
    Tentative: 18
    Rejected: 0
    Iteration: 3 / 50
    Confirmed: 0
    Tentative: 18
    Rejected: 0
    Iteration: 4 / 50
    Confirmed: 0
    Tentative: 18
    Rejected: 0
    Iteration: 5 / 50
    Confirmed: 0
    Tentative: 18
    Rejected: 0
    Iteration: 6 / 50
    Confirmed: 0
    Tentative: 18
    Rejected: 0
    Iteration: 7 / 50
    Confirmed: 0
    Tentative: 18
    Rejected: 0
    Iteration: 8 / 50
    Confirmed: 13
    Tentative: 0
    Rejected: 5

    BorutaPy finished running.
    Iteration: 9 / 50
    Confirmed: 13
    Tentative: 0
    Rejected: 5
    837.3257942199707

    print('Confirmed: \n',list(np.array(X_train.columns)[feat_selector_reg.ranking_==1]))
    print('\nTentatives: \n',list(np.array(X_train.columns)[feat_selector_reg.ranking_==2]))
    print('\nRejected: \n',list(np.array(X_train.columns)[feat_selector_reg.ranking_>=3]))
    
    • 1
    • 2
    • 3

    Confirmed:
    [‘bathrooms’, ‘sqft_living’, ‘sqft_lot’, ‘waterfront’, ‘view’, ‘grade’, ‘sqft_above’, ‘yr_built’, ‘zipcode’, ‘lat’, ‘long’, ‘sqft_living15’, ‘sqft_lot15’]

    Tentatives:
    [‘sqft_basement’]

    Rejected:
    [‘bedrooms’, ‘floors’, ‘condition’, ‘yr_renovated’]


    3. 特征比较

    3.1 Gini Importance
    X_train_gini_reg=X_train[['grade','sqft_living','lat','long']]
    X_test_gini_reg=X_test[['grade','sqft_living','lat','long']]
    
    rf_gini_reg = RandomForestRegressor(n_estimators=200,
                                min_samples_leaf=2,
                                n_jobs=-1,
                                oob_score=True,
                                random_state=42)
    rf_gini_reg.fit(X_train_gini_reg, y_train)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    3.2 Permutation Importance
    X_train_perm_reg=X_train.drop(['bedrooms','yr_renovated','floors','sqft_basement','condition','bathrooms'],axis=1)
    X_test_perm_reg=X_test.drop(['bedrooms','yr_renovated','floors','sqft_basement','condition','bathrooms'],axis=1)
    
    rf_perm_reg = RandomForestRegressor(n_estimators=200,
                                min_samples_leaf=2,
                                n_jobs=-1,
                                oob_score=True,
                                random_state=42)
    rf_perm_reg.fit(X_train_perm_reg, y_train)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    3.3 Boruta
    X_train_boruta_reg=X_train.drop(['bedrooms','floors','condition','yr_renovated'],axis=1)
    X_test_boruta_reg=X_test.drop(['bedrooms','floors','condition','yr_renovated'],axis=1)
    
    rf_boruta_reg = RandomForestRegressor(n_estimators=200,
                                min_samples_leaf=2,
                                n_jobs=-1,
                                oob_score=True,
                                random_state=42)
    rf_boruta_reg.fit(X_train_boruta_reg, y_train)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9

    4. 模型比较

    print('******************* Original Model ***********************')
    print('\n')
    predictions(rf_reg,X_test,y_test)
    
    print ('\n')
    
    print('**** Feature selection based on Gini Importance ****')
    print('\n')
    predictions(rf_gini_reg,X_test_gini_reg,y_test)
    
    print ('\n')
    
    print('**** Feature selection based on Permutation Importance *****')
    print('\n')
    predictions(rf_perm_reg,X_test_perm_reg,y_test)
    
    print ('\n')
    
    print('*********** Feature selection based on Boruta **************')
    print('\n')
    predictions(rf_boruta_reg,X_test_boruta_reg,y_test)
    
    • 1
    • 2
    • 3
    • 4
    • 5
    • 6
    • 7
    • 8
    • 9
    • 10
    • 11
    • 12
    • 13
    • 14
    • 15
    • 16
    • 17
    • 18
    • 19
    • 20
    • 21

    ******************* Original Model ***********************

    Metrics for Random Forest Regressor
    Average absolute error: 72704.15 degrees.
    Improvement over baseline: 100.0 %.
    Accuracy: 86.88 %.
    R2 score: 0.8381720745711922

    **** Feature selection based on Gini Importance ****

    Metrics for Random Forest Regressor
    Average absolute error: 81288.41 degrees.
    Improvement over baseline: 100.0 %.
    Accuracy: 85.56 %.
    R2 score: 0.8052584664901095

    **** Feature selection based on Permutation Importance *****

    Metrics for Random Forest Regressor
    Average absolute error: 72741.67 degrees.
    Improvement over baseline: 100.0 %.
    Accuracy: 86.77 %.
    R2 score: 0.8477802122659206

    *********** Feature selection based on Boruta **************

    Metrics for Random Forest Regressor
    Average absolute error: 73254.05 degrees.
    Improvement over baseline: 100.0 %.
    Accuracy: 86.75 %.
    R2 score: 0.8388239891237698

    Permutation Importance对于R2的计算是比较好的模型,Permutation Importance和Boruta都是比较好的方法。

  • 相关阅读:
    深入源码剖析ThreadPoolExecutor的工作原理
    向下沟通(上):无权无势,他们不听你的怎么办?
    数据结构——二叉搜索树的实现、删除(最大值和最小值、最大值和最小值)
    C++中string的用法总结+底层剖析
    GreenPlum DB向GBase迁移_TIMESTAMP类型
    Redis链表
    f-stack的源码编译安装
    数据结构例题代码及其讲解-递归与树
    AI系列:大语言模型的function calling(下)- 使用LangChain
    SpringBoot MongoDB GridFsTemplate实现文件管理
  • 原文地址:https://blog.csdn.net/amyniez/article/details/127823476