需要数据集和源码请点赞关注收藏后评论区留言~~~
我们将使用Cora数据集。
该数据集共2708个样本点,每个样本点都是一篇科学论文,所有样本点被分为7个类别,类别分别是1)基于案例;2)遗传算法;3)神经网络;4)概率方法;5)强化学习;6)规则学习;7)理论
每篇论文都由一个1433维的词向量表示,所以,每个样本点具有1433个特征。词向量的每个元素都对应一个词,且该元素只有0或1两种取值。取0表示该元素对应的词不在论文中,取1表示在论文中。所有的词来源于一个具有1433个词的字典。
每篇论文都至少引用了一篇其他论文,或者被其他论文引用,也就是样本点之间存在联系,没有任何一个样本点与其他样本点完全没联系。如果将样本点看作图中的点,则这是一个连通的图,不存在孤立点。
数据集主要文件有两个:cora.cites, cora.content。其中,cora.content包含了2708个样本的具体信息,每行代表一个论文样本,格式为
<论文id> <由01组成的1433维特征> <论文类别(label)>
总的来说,如果将论文当作“图”的节点,则引用关系则为“图”的边,论文节点信息和引用关系共同构成了图数据。本次实验,我们将利用这些信息,对论文所属的类别进行预测,完成关于论文类别的分类任务。
图神经网络(Graph Neural Networks, GNN)作为新的人工智能学习模型,可以将实际问题看作图数据中节点之间的连接和消息传播问题,对节点之间的依赖关系进行建模,挖掘传统神经网络无法分析的非欧几里得空间数据的潜在信息。在自然语言处理、计算机视觉、生物化学等领域中,图神经网络得到广泛的应用,并发挥着重要作用。
图卷积神经网络(Graph Convolutional Networks, GCN)是目前主流的图神经网络分支,分类任务则是机器学习中的常见任务。我们将利用GCN算法完成分类任务,进一步体会理解图神经网络工作的原理、GCN的构建实现过程,以及如何将GCN应用于分类任务。
如下图 可见随着训练次数的增加,损失率在下降,精确度在上升,大概在200次左右收敛。




- from __future__ import division
- from __future__ import print_function
- import os
- os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
- import time
- import argparse
- import numpy as np
- from torch.utils.data import DataLoader
- import torch
- import torch.nn.functional as F
- import torch.optim as optim
-
- from utils import load_data, accuracy
- from models import GCN
- import matplotlib.pyplot as plt
-
- # Training settings
- parser = argparse.ArgumentParser()
- parser.add_argument('--no-cuda', action='store_true', default=False,
- help='Disables CUDA training.')
- parser.add_argument('--fastmode', action='store_true', default=False,
- help='Validate during training pass.')
- parser.add_argument('--seed', type=int, default=42, help='Random seed.')
- parser.add_argument('--epochs', type=int, default=300,
- help='Number of epochs to train.')
- parser.add_argument('--lr', type=float, default=0.01,
- help='Initial learning rate.')
- parser.add_argument('--weight_decay', type=float, default=5e-4,
- help='Weight decay (L2 loss on parameters).')
- parser.add_argument('--hidden', type=int, default=16,
- help='Number of hidden units.')
- parser.add_argument('--dropout', type=float, default=0.5,
- help='Dropout rate (1 - keep probability).')
-
- args = parser.parse_args()
- args.cuda = not args.no_cuda and torch.cuda.is_available()
-
- .manual_seed(args.seed)
-
- # Load data
- adj, features, labels, idx_train, idx_val, idx_test = load_data()
-
- # Model and optimizer
- model = GCN(nfeat=features.shape[1],
- nhid=args.hidden,
- nclass=labels.max().item() + 1,
- dropout=args.dropout)
- optimizer = optim.Adam(model.parameters(),
- lr=args.lr, weight_decay=args.weight_decay)
-
- if args.cuda:
- model.cuda()
- features = features.cuda()
- adj = adj.cuda()
- labels = labels.cuda()
- idx_train = idx_train.cuda()
- idx_val = idx_val.cuda()
- idx_test = idx_test.cuda()
- Loss_list = []
-
-
- accval=[]
-
- def train(epoch):
- t=time.time()
- model.train()
- optimizer.zero_grad()
- output=model(features,adj)
- loss_train=F.nll_loss(output[idx_train],labels[idx_train])
- acc_train=accuracy(output[idx_train],labels[idx_train])
- loss_train.backward()
- optimizer.step()
-
- if not args.fastmode:
- model.eval()
- output=model(features,adj)
- loss_val=F.nll_loss(output[idx_val],labels[idx_val])
- acc_val=accuracy(output[idx_val],labels[idx_val])
- print('Epoch:{:04d}'.format(epoch+1),
- 'loss_train:{:.4f}'.format(loss_train.item()),
- 'acc_train:{:.4f}'.format(acc_train.item()),
- 'loss_val:{:.4f}'.format(loss_val.item()),
- 'acc_val:{:.4f}'.format(acc_val.item()),
- 'time:{:.4f}s'.format(time.time()-t))
- Loss_list.append(loss_train.item())
- Accuracy_list.append(acc_train.item())
- lossval.append(loss_val.item())
- accval.append(acc_val.item())
-
-
-
-
-
-
-
-
-
-
-
- def test():
- model.eval()
- output = model(features, adj)
- loss_test = F.nll_loss(output[idx_test], labels[idx_test])
- acc_test = accuracy(output[idx_test], labels[idx_test])
- print("Test set results:",
- "loss= {:.4f}".format(loss_test.item()),
- "accuracy= {:.4f}".format(acc_test.item()))
- acc=acc_test.detach().numpy()
- loss=loss_test.detach().numpy()
-
- print(type(loss_test))
- print(type(acc_test))
-
-
- # 定义两个数组
-
-
- # Train model
- t_total = time.time()
-
- for epoch in range(args.epochs):
- train(epoch)
-
-
-
-
-
- print("Optimization Finished!")
- printal time elapsed: {:.4f}s".format(time.time() - t_total))
- '''
- plt.plot([i for i in range(len(Loss_list))],Loss_list)
- pplot([i for i in range(len(Accuracy_list))],Accuracy_list)
- '''
- plt.plot([i for i in range(len(lossval))],lossval)
- plot([i for i in range(len(accval))],accval)
- print(type(Loss_list))
- print(type(Accuracy_list))
- #plt.plot([i for i in range(len(Accuracy_list),Accuracy_list)])
- plt.show()
- # Testing
- test()
- import torch.nn as nn
- import torch.nn.functional as F
- from layers import GraphConvolution
-
-
- class GCN(nn.Module):
- def __init__(self, nfeat, nhid, nclass, dropout):
- super(GCN, self).__init__()
-
- self.gc1 = GraphConvolution(nfeat, nhid)
- on(nhid, nclass)
- self.dropout = dropout
-
- def forward(self, x, adj):
- x=F.relu(self.gc1(x,adj))
- x=F.dropout(x,self.dropout,training=self.training)
- x=self.gc2(x,adj)
- return F.log_softmax(x,dim=1)
- import math
-
- import torch
-
- from torch.nn.parameter import Parameter
- from torch.nn.modules.module import Module
-
-
- class GraphConvolution(Module):
- """
- Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
- """
-
- def __init__(self, in_features, out_features, bias=True):
- super(GraphConvolution, self).__init__()
- self.in_features=in_features
- self.out_features=out_features
- self.weight=Parameter(torch.FloatTensor(in_features,out_features))
- if bias:
- self.bias=Parameter(torch.FloatTensor(out_features))
- else:
- self.register_parameter('bias',None)
- self.reset_parameters()
-
-
- def reset_parameters(self):
- stdv = 1. / math.sqrt(self.weight.size(1))
- self.weight.data.uniform_(-stdv, stdv)
- if self.bias is not None:
- self.bias.data.uniform_(-stdv, stdv)
-
- def forward(self, input, adj):
- support=torch.mm(input,self.weight)
- output=torch.spmm(adj,support)
- if self.bias is not None:
- return output+self.bias
- else:
- return output
-
- def __repr__(self):
- return self.__class__.__name__ + ' (' \
- + str(self.in_features) + ' -> ' \
- + str(self.out_features) + ')'
- import numpy as np
- import scipy.sparse as sp
- import torch
-
-
- def encode_onehot(labels):
- classes = set(labels)
- classes_dict = {c: np.identity(len(classes))[i, :] for i, c in
- enumerate(classes)}
- labels_onehot = np.array(list(map(classes_dict.get, labels)),
- dtype=np.int32)
- return labels_onehot
-
-
- def load_data(path="data/cora/", dataset="cora"):
- """Load citation network dataset (cora only for now)"""
- print('Loading {} dataset...'.format(dataset))
-
- idx_features_labels = np.genfromtxt("{}{}.content".format(path, dataset),
- dtype=np.dtype(str))
- features = sp.csr_matrix(idx_features_labels[:, 1:-1], dtype=np.float32)
- labels = encode_onehot(idx_features_labels[:, -1])
-
- # build graph
- idx = np.array(idx_features_labels[:, 0], dtype=np.int32)
- idx_map = {j: i for i, j in enumerate(idx)}
- edges_unordered = np.genfromtxt("{}{}.cites".format(path, dataset),
- dtype=np.int32)
- edges = np.array(list(map(idx_map.get, edges_unordered.flatten())),
- dtype=np.int32).reshape(edges_unordered.shape)
- adj = sp.coo_matrix((np.ones(edges.shape[0]), (edges[:, 0], edges[:, 1])),
- shape=(labels.shape[0], labels.shape[0]),
- dtype=np.float32)
-
- # build symmetric adjacency matrix
- adj = adj + adj.T.multiply(adj.T > adj) - adj.multiply(adj.T > adj)
-
- features = normalize(features)
- adj = normalize(adj + sp.eye(adj.shape[0]))
-
- idx_train = range(140)
- idx_val = range(200, 500)
- idx_test = range(500, 1500)
-
- features = torch.FloatTensor(np.array(features.todense()))
- labels = torch.LongTensor(np.where(labels)[1])
- adj = sparse_mx_to_torch_sparse_tensor(adj)
-
- idx_train = torch.LongTensor(idx_train)
- idx_val = torch.LongTensor(idx_val)
- idx_test = torch.LongTensor(idx_test)
-
- return adj, features, labels, idx_train, idx_val, idx_test
-
-
- def normalize(mx):
- """Row-normalize sparse matrix"""
- rowsum = np.array(mx.sum(1))
- r_inv = np.power(rowsum, -1).flatten()
- r_inv[np.isinf(r_inv)] = 0.
- r_mat_inv = sp.diags(r_inv)
- mx = r_mat_inv.dot(mx)
- return mx
-
-
-
-
- de_to_torch_sparse_tensor(sparse_mx):
- """Convert a scipy sparse matrix to a torch sparse tensor."""
- sparse_mx = sparse_mx.tocoo().astype(np.float32)
- indices = torch.from_numpy(
- np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64))
- values = torch.from_numpy(sparse_mx.data)
- shape = torch.Size(sparse_mx.shape)
- return torch.sparse.FloatTensor(indices, values, shape)
创作不易 觉得有帮助请点赞关注收藏~~~