
人脸识别是身份识别的一种方式,目的就是要判断图片和视频中人脸的身份时什么。
本文将详细介绍人脸识别的4个特点、4个步骤、5个难点及算法的发展轨迹。
人脸识别是 计算机视觉-computer Vision 领域里很典型的应用。
人脸识别的目的就是要判断图片和视频(视频是由图片构成的)中人脸的身份是什么。
人脸识别是身份识别的一种,它跟身份证识别、指纹识别、虹膜识别都是相似的。可以将人脸识别和大家熟悉的身份证做对比:

人脸识别和其他身份识别相比,有4个特点:

基于以上特点,人脸识别正在被广泛的应用在各个领域。大家在生活中随处都可以看到人脸识别的应用。
人脸识别的过程中有4个关键的步骤:

下面详细说明一下这4个步骤。
人脸检测的目的是寻找图片中人脸的位置。当发现有人脸出现在图片中时,不管这个脸是谁,都会标记出人脸的坐标信息,或者将人脸切割出来。
可以使用方向梯度直方图(HOG)来检测人脸位置。先将图片灰度化,接着计算图像中像素的梯度。通过将图像转变成HOG形式,就可以获得人脸位置。

人脸对齐是将不同角度的人脸图像对齐成同一种标准的形状。
先定位人脸上的特征点,然后通过几何变换(仿射、旋转、缩放),使各个特征点对齐(将眼睛、嘴等部位移到相同位置)。

人脸图像的像素值会被转换成紧凑且可判别的特征向量,这也被称为模板(template)。理想情况下,同一个主体的所有人脸都应该映射到相似的特征向量。

在人脸匹配构建模块中,两个模板会进行比较,从而得到一个相似度分数,该分数给出了两者属于同一个主体的可能性。

人脸图像在现实世界中的呈现具有高度的可变性。所以人脸识别也是最有挑战性的生物识别方法之一。人脸图像可变的地方包括:

人脸识别领域,也是从传统机器学习算法过度到深度学习算法的。

在机器学习阶段,人脸识别也经历了3个重要的阶段:
在深度学习阶段,算法的发展也同样经历了3个阶段:
人脸识别的应用变得越来越广泛,只要跟身份识别相关的未来都有可能使用人脸识别。下面列几个典型的应用场景。